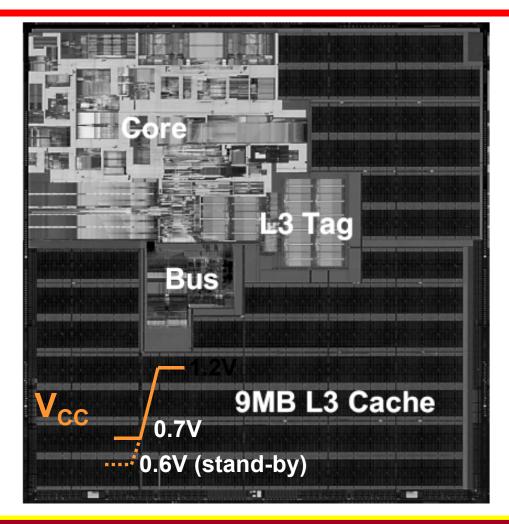
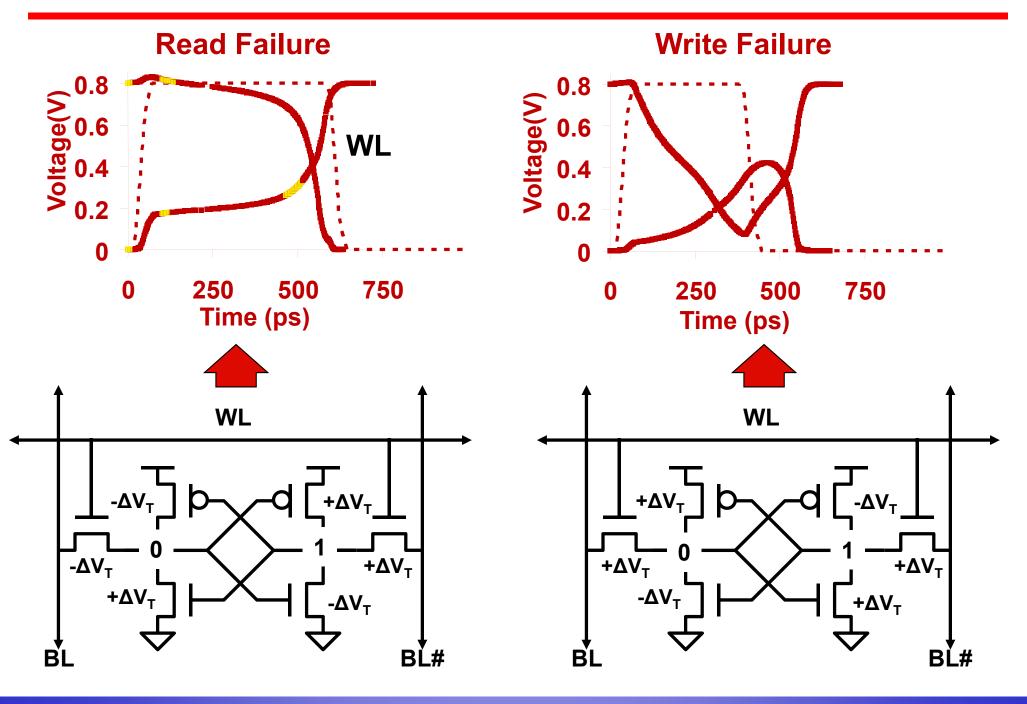

SRAM Scaling Limit: Its Circuit & Architecture Solutions

Nam Sung Kim, Ph.D. Assistant Professor

Department of Electrical and Computer Engineering University of Wisconsin - Madison



SRAM VCC_{min} Challenges


- VCC/Freq scaling for power efficient computing requires SRAMs to operate at low VCC
- Increasing process variations exacerbate SRAM failures limiting the lowest core operating VCC –VCC_{min}

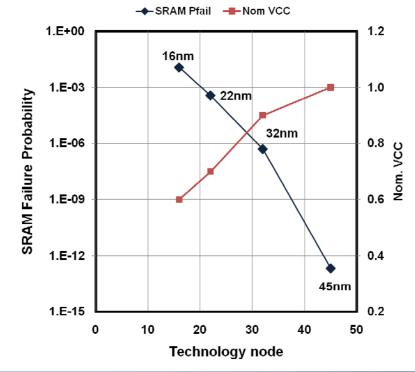
SRAM VCC_{min} Challenges

SRAM area scaling is getting harder because of process variations and voltage scaling!

SRAM Failure Mechanisms

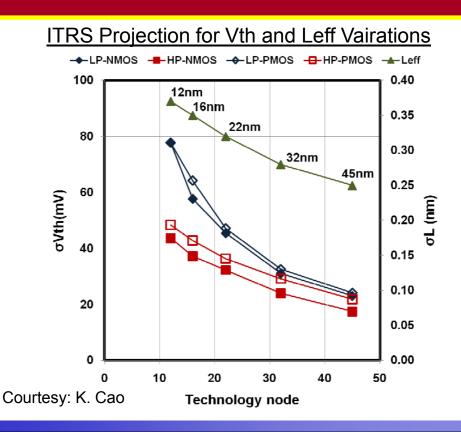
Process Variation Trend

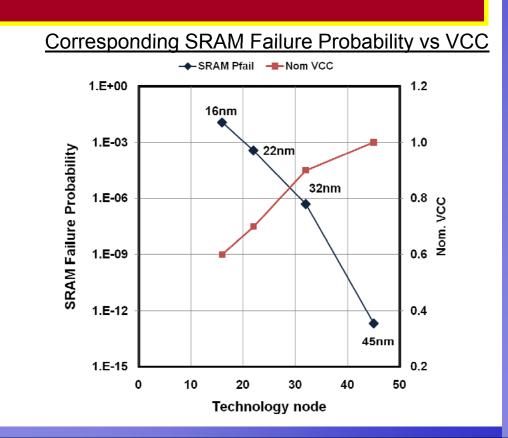
Threshold variation:


$$\sigma V_{th0} = \frac{C_1}{\sqrt{WL}} \quad \text{where} \quad C_1 = \sqrt{\frac{q}{3\varepsilon_{ox}}} \cdot \sqrt{T_{oxe}(V_{TH} - V_{FB} - 2\phi_B)}$$

• Gate length variation:

$$\sigma L = \frac{\sigma L_{LER}}{\sqrt{1 + \frac{W}{W_c}}} \quad \text{where } \sigma L_{LER} = 0.5 \text{ and } W_c = 15 \text{ nm}$$


ITRS Projection for Vth and Leff Vairations -+ LP-NMOS -+ HP-NMOS -+ LP-PMOS -- HP-PMOS -+ Leff 100 0.40 12nm 16nm 0.35 22nm 80 0.30 32nm 45nm 0.25 oVth(mV) 60) E 0.20 Q Б 40 0.15 0.10 20 0.05 0 0.00 20 30 0 10 40 50 Courtesy: K. Cao Technology node


Corresponding SRAM Failure Probability vs VCC

Process Variation Trend

Increasing random variations & decreasing VCC w/ technology scaling begin to limit SRAM size & VCC scaling!

Circuit Solution

- Dynamic/adaptive techniques 6T SRAM
 - Dual supply column-based technique¹
 - Assisted read/write techniques^{2,3,4}
- 1. K. Zhang et al. A 3-GHz 70-Mb SRAM in 65-nm CMOS Technology With Integrated Column-Based Dynamic Power Supply. IEEE J. Solid-State Circuits vol 41 no 1, pp 146–151, 2006.
- M. Khellah, N. Kim, et al. PVT-Variations and Supply-Noise Tolerant 45nm Dense Cache Arrays with Diffusion-Notch-Free (DNF) 6T SRAM Cells and Dynamic Multi-Vcc Circuits. In Proc. IEEE VLSI Circuit Symposium, Jun 2008.
- F. Hamzaoglu, K. Zhang, et al. A 153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Reduction in 45nm High-κ Metal-Gate CMOS Technology. ISSCC 2008.
- 4. S. Ohbayashi. A 65-nm SoC Embedded 6T-SRAM Designed for manufacturability With Read and Write Operation Stabilizing Circuits. IEEE J. Solid-State Circuits vol 42 no 4, pp 820–829, 2007.

SRAM cell sizing +ECCs

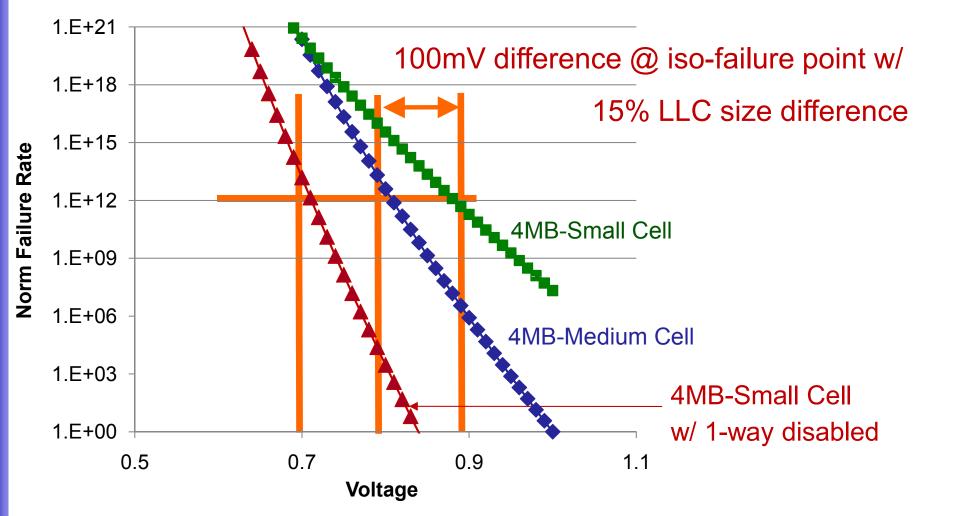
- 6T SRAM cell area vs. failure rate trade-off
 - Carefully sized 6T SRAM cells for large caches have been more area efficient than 8T¹ and 10T^{2,3} SRAMs at the same VCC_{min}

• Stronger ECCs allow us to continue VCC_{min} scaling (for now)

- 1. N. Verma, A. Chandrakasan. A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy. ISSCC 2007.
- 2. B. Calhoun, A. Chandrakasan. A 256kb Sub-threshold SRAM in 65nm CMOS. ISSCC 2006.
- 3. I. Chang, J. Kim, K. Roy. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS. ISSCC 2008.
- 4. Z. Chishti, et al. Improving Cache Lifetime Reliability at Ultra-low Voltages. MICRO 2009.

Circuit Solution

- Dynamic/adaptive techniques 6T SRAM
 - Dual supply column-based technique¹
 - Assisted read/write techniques^{2,3,4}


Order-of-magnitude failure rate reduction w/ conventional 6T SRAM + small overhead!

SRAM cell sizing +ECCs

- 6T SRAM cell area vs. failure rate trade-off
 - Carefully sized 6T SRAM cells for large caches have been more area efficient than $8T^1$ and $10T^{2,3}$ SRAMs at the same VCC_{min}
- Stronger ECCs allow us to continue VCC_{min} scaling (for now)

Can we continue the current trend w/ 6T SRAM? Probably not.

Architecture Solution

- Small cell is 15% smaller, but 100mV higher VCC_{min} than medium one
- Allowing failure in any one LLC way in each set w/ small cell give 100mV lower VCC_{min} while 15% smaller overall cache area.

Dynamic Cache Resizing

- Designing a large cache operating at both high and low voltages is very challenging
 - Lower operating voltage requires a larger area per bit
- Can we design a configurable cache?
 - Allow as big cache size as possible when performance is important
 - Allow as low voltage as possible at the expense of cache capacity when power is important

At lower voltages and frequencies

 Processor performance is less sensitive to on-chip cache size due to reduced frequency gap b/w main memory and on-chip cache

Reduce cache size to lower VCC_{min} at lower freq since performance impact is very small!

Conclusion

- VCC/Freq scaling for power efficient computing
 Require SRAMs to operate at low VCC
- Increasing random variations & decreasing VCC w/ technology scaling
 - Begin to limit SRAM size scaling!
- Various adaptive/dynamic + sizing + ECC techniques
 - Have reduced the SRAM failure rate by order-of-magnitude failure rate w/ conventional 6T SRAM + small overhead.
 - So far, 6T SRAM has been more area efficient than 8T and 10T SRAM for large cache structures
- Incorporating architecture techniques
 - Lower VCC_{min} by trading cache capacity w/ lower VCC_{min}
 - The performance impact is very small due to reduced frequency gap b/w main memory and on-chip caches