

International Technology Roadmap for Semiconductors

Emerging Research Materials (ERM) 2nd Deterministic Doping Workshop

Summary

International Technology Roadmap for Semiconductors

Emerging Research Materials (ERM) 2nd Deterministic Doping Workshop

- Date: November 12, 2010
- Place: Whitecotton Room, Hotel Shattuck Plaza, Berkeley
- Time:
 8:00am 5:20pm PDT

 11:00am 8:20pm EDT

 0:00am 9:20am (November 13) Japan

 1:00am 10:20am (November 13) Australia

 5:00pm 2:20am Europe

http://www.src.org/calendar/e004100/

Co-chair persons

Daniel Herr/SRC

Takahiro Shinada/Waseda Univ.

	Name	Organization		
1	D. Herr	SRC	Co-chair	Co-chair of ERM, ITRS
2	T. Shinada	Waseda Univ.	Co-chair	Single ion implantation
3	S. Shankar	Intel	Presenter	
4	M. Current	Current Scientific	Presenter	Implant process
5	T. Schenkel	LBNL	Presenter	Single ion implantation
6	A. Javey	UC Berkeley	Presenter	DSA
7	C. Ober	Cornell Univ.	Presenter	DSA
8	M. Simmons	UNSW	Presenter	STM positioning
9	YJ. Lee	NDL	Presenter	Dopant activation
10	K. Inoue	Kyoto Univ.	Presenter	Atom probe
11	M. Tabe	Shizuoka Univ.	Presenter	Single dopant device
12	S. Rogge	TU Delft	Presenter	Single dopant device
13	A. Asenov	Univ. Glasgow	Presenter	Device modeling
14	A. Morello	UNSW	Presenter	Single dopant spin control
15	G. Fuchs	UCSB	Presenter	Nitrogen-vacancy center in Diamond
16	B. Naydenov	Stuttgart	Presenter	Nitrogen-vacancy center in Diamond
17	A. Chen	Global Foundries		
18	E. Bielejec	SNL		Single ion implantation
19	M. Garner	Intel		Co-chair of ERM, ITRS
20	T. Hiramoto	Univ. of Tokyo		Ex-chair of Japan ERD, ITRS
21	L. Hollenberg	Univ. Melbourne	Remote	Quantum transport modeling
22	M. Hori	Waseda Univ.		Single ion implantation
23	D. Jamieson	Univ. of Melbourne	Remote	Single ion implantation
24	J. McCallum	Univ. of Melbourne	Remote	Single ion implantation
25	A. Persaud	LBNL		Single ion implantation
26	T. Peterson	Dow Chemical Company		
27	E. Prati	CNR	Remote	Single dopant device
28	A. Vanderpool	Intel	Remote	Implant process
29	C. Weis	LBNL		Single ion implantation
30		LBNL		Single ion implantation
31		LBNL		Single ion implantation

Session I	: ITRS requirements	
8:00-8:10am	Welcome, introduction and guidelines	D. Herr/SRC
8:10-8:20am	Overview	T. Shinada/Waseda Univ.
8:20-8:45am	End user community perspective	S. Shankar/Intel
8:45-9:10am	Doping of Atomic-scale Processed Materials and Devices	M. Current/Current Scientific

Session II : Deterministic processes		
9:10-9:35am	Single ion implantation	T. Schenkel/LBNL
9:35-10:00am	Directed self-assembly: Doping	A. Javey/UC Berkeley
10:00-10:25am	STM positioning	M. Simmons/UNSW
10:25-10:45am	Break	
10:45-11:10am	Dopant activation	YJ. Lee/National Nano Device Lab. Taiwan
11:10-11:35am	3D atom probe	K. Inoue/Kyoto
11:35-12:00pm	Nitrogen-Vacancy spin control in diamond: Ultrafast single spin manipulation	G. Fuchs/Prof. Awschalom group, UCSB
12:00-12:30	Walk-on presentation Round table discussion Group Photo	ТВА
12:30-1:30pm	Lunch	

Session I	II: Deterministic devices	
1:30-1:55pm	Single dopant devices: Quantum confinement transition of single dopant in FinFET	S. Rogge/Delft Univ. of Technology
1:55-2:20pm	Single dopant devices: Single-electron transport through single-dopants	M. Tabe/Shizuoka Univ.
2:20-2:45pm	Device Modeling	A. Asenov/Univ. Glasgow
2:45-3:10pm	Single dopant spin control in SET	A. Morello/UNSW
3:10-3:30pm	Break	
3:30-3:55pm	Nitrogen-Vacancy spin control in diamond	B. Naydenov/Prof. Wrachtrup& Jelezko group, Stuttgart
3:55-4:20	Directed self-assembly: Patterning	C. Ober/Cornell Univ.
4:20-4:50	Walk-on presentation/Round table discussion	Moderator: D. Herr
4:50-5:05pm	Brief break	
5:05-5:20pm	Wrap up discussion and action items	Moderator: D. Herr
5:20	Closing remarks & Adjourn	D. Herr, T. Shinada
2nd ITRS Deterministic Doping Workshop, Nov. 12, 2010, D. Herr & T. Shinada 6		

Concept of deterministic doping

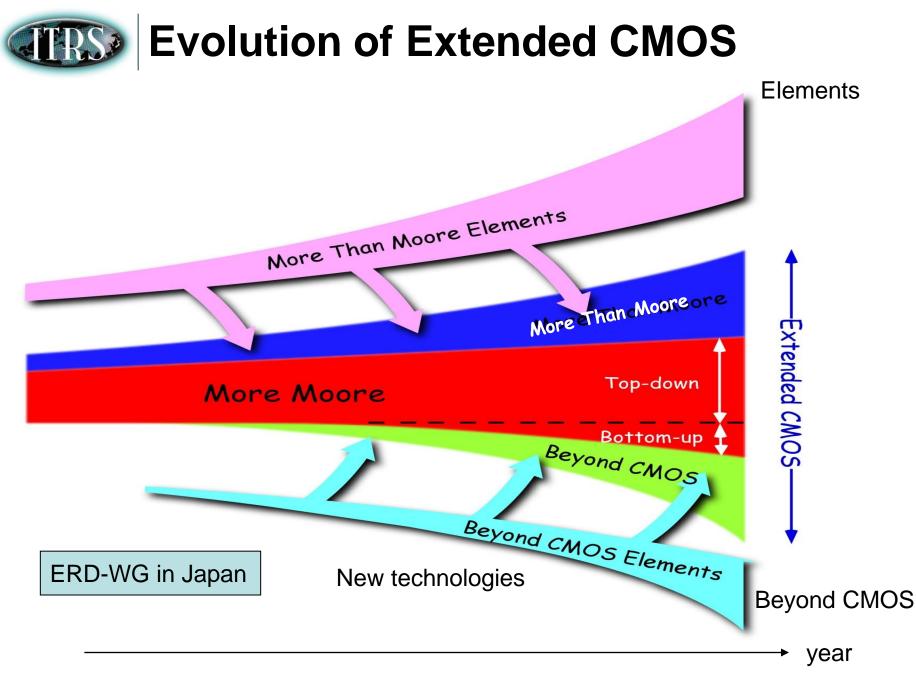
DEFINITION:

- Introduce single-dopant/few-dopants within the channel as well as source/drain regions with placement accuracy of less than 10nm.
- Activate the introduced single-dopant/few-dopants properly.
- Measure & image single-dopant/few-dopants precisely.
- Explore potential application opportunities through the atomistic control of materials, devices, processes and characterizations for better device performances.

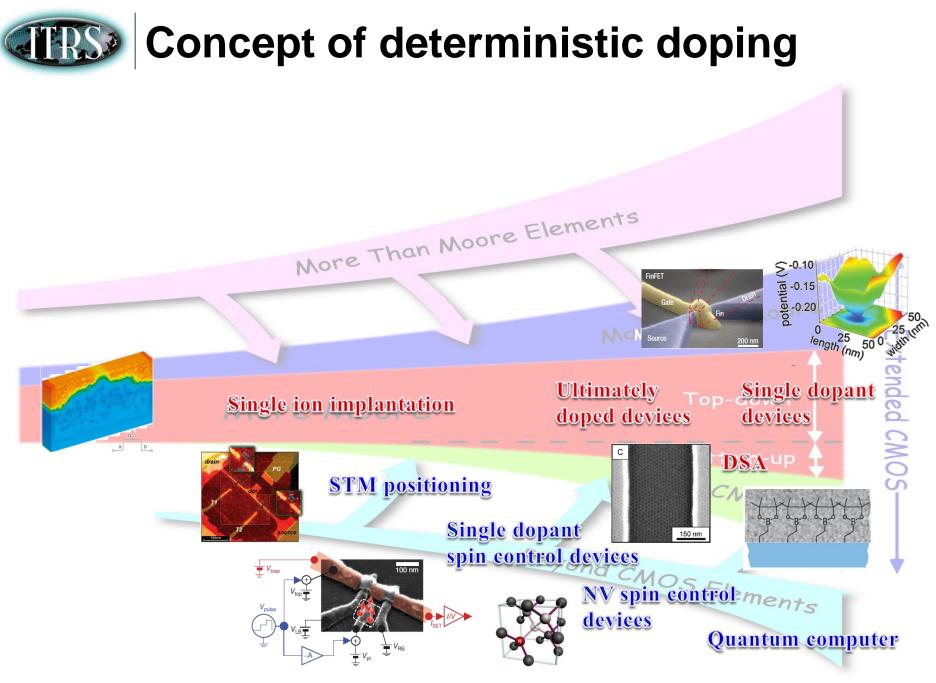
SUMMARY SESSION I : ITRS Requirements Perspectives

Perspectives	Key messages
End-user community	Thermodynamics and statistics may limit with scaling
perspective	 Alternate options: materials and processes, doping can be
	achieved during deposition
	 Technology challenges and focus: Presence of interfaces,
	thermal processes, scaling, cost
Supplier community	 Atomic scale processed materials and devices need to be
perspective	developed and articulated to engage the inventiveness of the
	"doping" community.
	• Implant evolving to be more precise, much like CVD has evolved
	towards ALD
	Enhance damage accumulation
	 Photonic world of integrated phonon and electron signal
	processing and communication

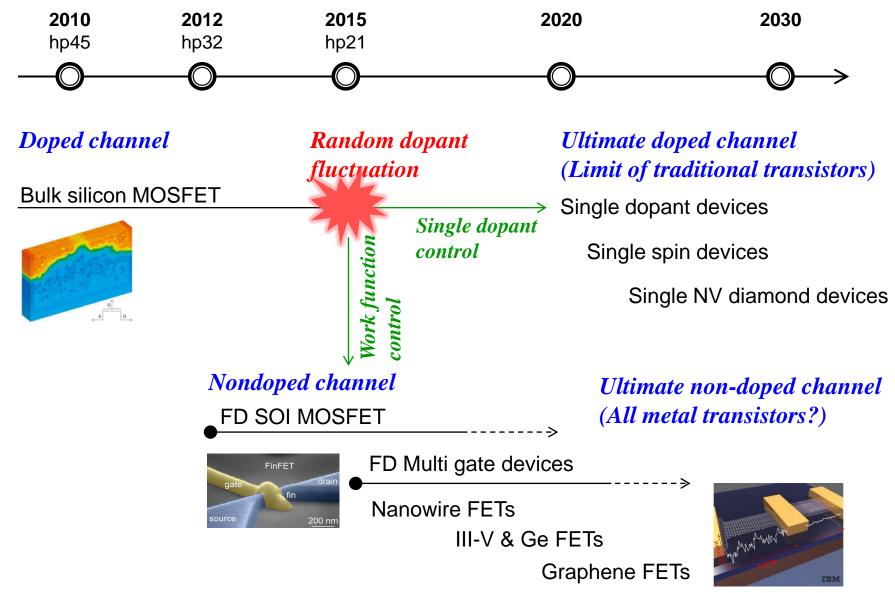
SUMMARY SESSION II : Deterministic Processes Progress and difficult challenges (1/2)


Processes	Progress	Difficult challenges
Single ion implantation	 Reliable single-ion counting Understanding dopant specific mechanism 	 Dopant placement < 10nm Activation Higher throughput
Directed self- assembly	 Patterning: BCPs 20nm size Dopants loaded with bio-inspired polymers Monolayer doping + Spike annealing, sub-5nm junction 	 Long range order, smaller size <5nm Triblock polymers Crystalizable and functional blocks Defects and contamination 2D dopant control, i.e. ordered dopant arrays
STM positioning	 World highest precision transistor True deterministic single dopant device 3D atomistic control, 3D device architectures High stability, all epitaxial in plane highly phosphorus doped gates with densities of ~2x10¹⁴cm⁻². Full activation in high density n-type Low temperature process Single shot read-out of single P donor spin in silicon with lifetimes of seconds for electron spin qubit applications 	 Higher temperature operation Higher throughput Device modeling Extending to different materials and dopants
Activation	 Microwave Anneal <500°C for B, P, As in Si, Ge, poly-Si Laser Anneal, Flash Anneal 	 Microwave uniformity, especially impact on dense metal lines
Imaging	 3D atom probe tomography(APT), LEAP SSRM, Kelvin force microscopy(KFM) STEM 	 Detection efficiency > 50% Improve S/N ratio Artifact of 3D reconstruction Specimen preparation

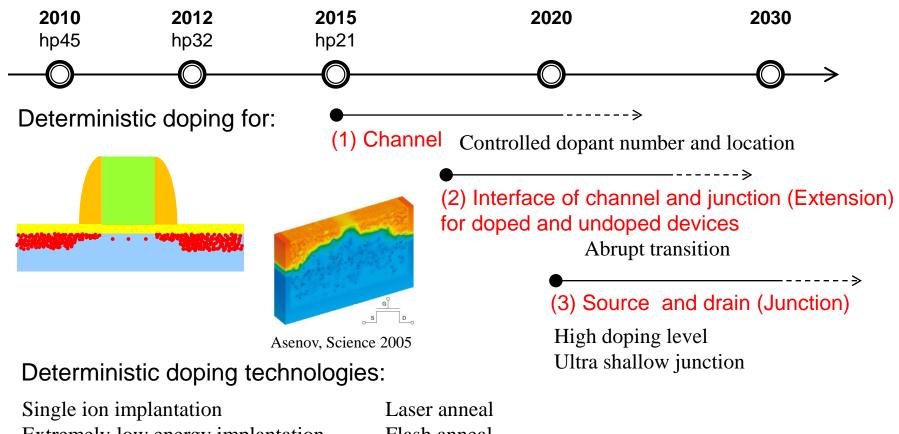
SUMMARY SESSION III : Deterministic Devices Progress and difficult challenges (2/2)


Devices	Progress	Difficult challenges
Modeling	 Drift diffusion (DD), Monte Carlo (MC), Quantum transport (QT) simulations Hierachical approach simulation from first principle to compact model 	 DD: mobility model capturing impact individual dopants in various configuration MC: short range corrections near interface QT: incorporation of phonon scattering Computational efficiency Accurate model for dopant potential
Single dopant transport	 Transport through single donor/acceptor Memory effect in 2-donor system Single electron transport in multi-donor system Charge pumping Single-dopant current spectroscopy Atomistic understanding of donor in nanodevices 	 Room temperature operation Precise dopant placement Push transport combined with modeling toward full metrology Device with immunity from fluctuation Single dopant electronics Go beyond boolean logic (more than Moore)
Single dopant spin control	 Single shot readout of electron spin of single P donor in Si with lifetime of seconds for electron spin qubit application ESR single donor in Si Lifetime up to 6s 92% readout visibility 	 Coherent spin transport High quality isotopically purified silicon 2-qubit devices with controllable coupling ESR single-donor in channel of transistor
Single nitrogen- vacancy (N-V) spin control in diamond	 Single spin readout at room temperature Room temperature operation 2.4ms of spin coherence Yield depends on energy: 1 to 60% Initialization time ~us Single shot readout at room temperature 	 N-V color center yield improvement to 100% Improve lateral resolution of ion implantation Collection efficiency photons

- Design for variability
- Interface control
- Metrology
- Quantum confinement
- Junction abruptness
- Physics of close couple dopant and interface
- Low temperature process for nanoscale CMOS and new materials



J. Hutchby, "Emerging Research Devices", 2010 ITRS Summer Public Conference, July 14,2010



Trends in device technologies

RS

Target of deterministic doping

Extremely low energy implantation Pre-amorphization implantation Cryo ion implantation Co-implantation Molecular implantation Plasma doping DSA doping

TRS

Laser anneal Flash anneal Microwave anneal

SSRM

Atom probe tomography Kelvin Force Microscopy

- Provide permissible PowerPoint slides
- Share the presentation files and contact information through the workshop website
- **Draw up** minutes of the workshop
- **Report** to ITRS Winter Meeting on December, 2010 in

Tsukuba, Japan

Work on ITRS 2011 Edition