
Making our Way through the End-of-the Roadmap Maze
Panel Position Statement

Sharad Malik
Princeton University

As we look forward over the next 10-15 years, there are several recognized roadblocks on the silicon
roadmap with very few pathways left to navigate between them. The major new challenges dealing with
complexity and uncertainty are:

o Compute performance needs to come from greater concurrency rather than increasing the
clock period: The limitation on continuing to increase the clock period comes from the need
to stay within the power budget envelope. However, this requires building up expertise in
programming highly concurrent architectures, with concurrency at possibly different levels of
granularity. This is a challenge since most applications/algorithms tend to have mostly
sequential flow, perhaps a consequence of the sequential nature of human thought. Further,
attempts to efficiently program parallel machines have not been very successful in the past.
We could attempt to redouble our efforts here, and develop new algorithms for the automatic
extraction of parallelism, but limited success with this in the past should give us some pause
in our predictions of success here.

o Increasing dynamic errors will need dynamic error checking and recovery mechanisms: A
variety of new modes of operational failures appear on the horizon that may be triggered by
thermal conditions, aging, or energized particle hits (soft-errors). These are all expected to
have greater impact with finer device geometries. Given the dynamic nature of these failures,
there is no alternative but to deal with them at runtime through dynamic error detection and
recovery. Related to this is the issue of dealing with increasing process variations for
succeeding technology generations. Given the greater range of variations, we can no longer
count on worst-case design to result in expected design improvements. Various possibilities
for “better than worst-case design” are being explored which must allow for some form of
occasional failure that must be recovered from. Again this points to dynamic checking of and
recovery from failures. Pursuing this direction will require significant research in developing
failure models as well as dynamic checking and recovery techniques at different levels of
design granularity. Given the lack of access to cutting edge fabrication facilities, any
modeling efforts will need to be conducted in collaboration with industrial partners. While
this is challenging, given our past success in modeling at all levels, the chances of success are
high here. The big question here is if we will be able to derive these models well in time to
drive the checking and recovery techniques that depend on them. In terms of developing
checking and recovery techniques, again this direction looks very promising. We have a long
successful history of developing fault-tolerant computing techniques and much of that can be
retooled to this new context as defined by the failure models.

o Runaway design complexity will need radical new bridges to cross the verification chasm:
There is a clear awareness of the rapidly growing gap between the rates of growth of our
ability to design and our ability to verify these designs. A simple argument shows us why this
gap will grow to a chasm unless radical new steps are taken to address this. Unlike area,
performance or power, hardware design complexity cannot be quantified precisely. Probably
the closest acceptable measure for design complexity is the number of states in the system.
The number of states is exponential in the number of state bits; which in turn tends to be
proportional to the number of transistors in the design. This, thanks to Moore’s Law has
roughly doubled every few years or so. Thus, the exponential growth rate due to Moore’s Law
combined with the exponential dependence of the number of states on the number of state bits
provides for a first order estimate of the growth rate of design complexity that is doubly
exponential over time. However, at the same time, the exponential growth rate due to Moore’s
Law has led to faster computation that we can bring to bear in terms of simulation cycles and

speed of formal verification algorithms. This still leaves us with a complexity growth rate that
is increasing exponentially compared to our ability to deal with it.

This exponential gap between the growing complexity and our ability to deal with it is
somewhat corroborated by some field data in the context of microprocessors that shows an
increase of design bugs that is linear in the number of transistors and thus exponential over
time. This increase in complexity and the corresponding bug rate have led to an exponential
increase in the verification effort, as measured by both the number of simulation vectors, as
well as the number of engineer years. This effort and cost continues to be justified given the
high cost of post-manufacture bugs. A post-manufacture, but pre-deployment bug may result
in one or more respins of silicon and each respin is estimated to run at several millions of
dollars in mask and other costs. A further cost of delays due to logic bugs discovered late in
the design and manufacturing process is the lost market opportunity. Significant delays in
product deployment may wipe out large profit margins or even lead to cancellation of projects.
Post-deployment bugs may be even more costly. The Pentium FDIV bug reportedly cost Intel
several hundred million dollars.

Given the large costs of and increasing number of bugs, verification efforts on design projects
will continue to grow to cope with this situation. However, an exponential growth in
verification costs is untenable even in the near future. In fact, the limited data on increasing
number of respins due to logic bugs is indicative of the growing number of bugs that continue
to stay in designs even late in the process, despite large verification efforts. Such occurrences
will only increase with time. I claim that soon we will need to reconcile ourselves to the fact
that hardware, like software will be shipped with bugs. This may seem inconceivable for
hardware for at least a couple of reasons. Software bugs result in failures relatively
sporadically, given that software tends to be extensively tested at speed. In comparison,
hardware validation is predominantly through simulation, which is done at a tiny fraction of
the speed of eventual deployment. Thus, bugs in hardware may manifest themselves
relatively often when run at speed. This is unacceptable. Second, software bugs can generally
be dealt with by resetting the system to some safe state. It is unclear how to do robust,
practical and reliable recovery for hardware. Clearly, some creative ideas are needed to deal
with this scenario.

One possible solution here is to deploy runtime validation techniques that complement pre-
silicon verification. Given that we will need runtime error checking and recovery to support
dynamic operational failures, it makes sense to leverage these techniques to support functional
failures also. However, unlike operational failure modes, we do not have a good
understanding of functional failure modes, i.e. what should we be checking for? Similarly,
recovery may be more complicated in this context, since functional failures cannot be dealt
with simple redundancy techniques. The lack of experience in this overall direction of
research makes this less predictable than the case for operational errors.

Another possible attack on dealing with the verification chasm is to have few hardware parts
and achieve product differentiation through software. This is not appealing for a couple of
reasons. First, without hardware differentiation we will be paying a high silicon and power
cost. Second, given the concern with programming highly concurrent processors, we are
depending on a solution that may not deliver. Thus, the more optimistic scenario is to try and
piggyback the solutions for dynamic operation failures. The likelihood of success there is
high; we just need to understand their combination with the functional failure context.

