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As we look forward over the next 10-15 years, there are several recognized roadblocks on the silicon 
roadmap with very few pathways left to navigate between them. The major new challenges dealing with 
complexity and uncertainty are: 

o Compute performance needs to come from greater concurrency rather than increasing the 
clock period: The limitation on continuing to increase the clock period comes from the need 
to stay within the power budget envelope. However, this requires building up expertise in 
programming highly concurrent architectures, with concurrency at possibly different levels of 
granularity. This is a challenge since most applications/algorithms tend to have mostly 
sequential flow, perhaps a consequence of the sequential nature of human thought. Further, 
attempts to efficiently program parallel machines have not been very successful in the past. 
We could attempt to redouble our efforts here, and develop new algorithms for the automatic 
extraction of parallelism, but limited success with this in the past should give us some pause 
in our predictions of success here. 

o Increasing dynamic errors will need dynamic error checking and recovery mechanisms: A 
variety of new modes of operational failures appear on the horizon that may be triggered by 
thermal conditions, aging, or energized particle hits (soft-errors). These are all expected to 
have greater impact with finer device geometries. Given the dynamic nature of these failures, 
there is no alternative but to deal with them at runtime through dynamic error detection and 
recovery. Related to this is the issue of dealing with increasing process variations for 
succeeding technology generations. Given the greater range of variations, we can no longer 
count on worst-case design to result in expected design improvements. Various possibilities 
for “better than worst-case design” are being explored which must allow for some form of 
occasional failure that must be recovered from. Again this points to dynamic checking of and 
recovery from failures. Pursuing this direction will require significant research in developing 
failure models as well as dynamic checking and recovery techniques at different levels of 
design granularity. Given the lack of access to cutting edge fabrication facilities, any 
modeling efforts will need to be conducted in collaboration with industrial partners. While 
this is challenging, given our past success in modeling at all levels, the chances of success are 
high here. The big question here is if we will be able to derive these models well in time to 
drive the checking and recovery techniques that depend on them. In terms of developing 
checking and recovery techniques, again this direction looks very promising. We have a long 
successful history of developing fault-tolerant computing techniques and much of that can be 
retooled to this new context as defined by the failure models. 

o Runaway design complexity will need radical new bridges to cross the verification chasm: 
There is a clear awareness of the rapidly growing gap between the rates of growth of our 
ability to design and our ability to verify these designs. A simple argument shows us why this 
gap will grow to a chasm unless radical new steps are taken to address this. Unlike area, 
performance or power, hardware design complexity cannot be quantified precisely. Probably 
the closest acceptable measure for design complexity is the number of states in the system. 
The number of states is exponential in the number of state bits; which in turn tends to be 
proportional to the number of transistors in the design. This, thanks to Moore’s Law has 
roughly doubled every few years or so. Thus, the exponential growth rate due to Moore’s Law 
combined with the exponential dependence of the number of states on the number of state bits 
provides for a first order estimate of the growth rate of design complexity that is doubly 
exponential over time. However, at the same time, the exponential growth rate due to Moore’s 
Law has led to faster computation that we can bring to bear in terms of simulation cycles and 



speed of formal verification algorithms. This still leaves us with a complexity growth rate that 
is increasing exponentially compared to our ability to deal with it.  

This exponential gap between the growing complexity and our ability to deal with it is 
somewhat corroborated by some field data in the context of microprocessors that shows an 
increase of design bugs that is linear in the number of transistors and thus exponential over 
time. This increase in complexity and the corresponding bug rate have led to an exponential 
increase in the verification effort, as measured by both the number of simulation vectors, as 
well as the number of engineer years. This effort and cost continues to be justified given the 
high cost of post-manufacture bugs. A post-manufacture, but pre-deployment bug may result 
in one or more respins of silicon and each respin is estimated to run at several millions of 
dollars in mask and other costs.  A further cost of delays due to logic bugs discovered late in 
the design and manufacturing process is the lost market opportunity. Significant delays in 
product deployment may wipe out large profit margins or even lead to cancellation of projects. 
Post-deployment bugs may be even more costly. The Pentium FDIV bug reportedly cost Intel 
several hundred million dollars.  

Given the large costs of and increasing number of bugs, verification efforts on design projects 
will continue to grow to cope with this situation. However, an exponential growth in 
verification costs is untenable even in the near future. In fact, the limited data on increasing 
number of respins due to logic bugs is indicative of the growing number of bugs that continue 
to stay in designs even late in the process, despite large verification efforts. Such occurrences 
will only increase with time. I claim that soon we will need to reconcile ourselves to the fact 
that hardware, like software will be shipped with bugs. This may seem inconceivable for 
hardware for at least a couple of reasons. Software bugs result in failures relatively 
sporadically, given that software tends to be extensively tested at speed. In comparison, 
hardware validation is predominantly through simulation, which is done at a tiny fraction of 
the speed of eventual deployment.  Thus, bugs in hardware may manifest themselves 
relatively often when run at speed. This is unacceptable. Second, software bugs can generally 
be dealt with by resetting the system to some safe state. It is unclear how to do robust, 
practical and reliable recovery for hardware. Clearly, some creative ideas are needed to deal 
with this scenario.  

One possible solution here is to deploy runtime validation techniques that complement pre-
silicon verification. Given that we will need runtime error checking and recovery to support 
dynamic operational failures, it makes sense to leverage these techniques to support functional 
failures also. However, unlike operational failure modes, we do not have a good 
understanding of functional failure modes, i.e. what should we be checking for? Similarly, 
recovery may be more complicated in this context, since functional failures cannot be dealt 
with simple redundancy techniques. The lack of experience in this overall direction of 
research makes this less predictable than the case for operational errors. 

Another possible attack on dealing with the verification chasm is to have few hardware parts 
and achieve product differentiation through software. This is not appealing for a couple of 
reasons. First, without hardware differentiation we will be paying a high silicon and power 
cost. Second, given the concern with programming highly concurrent processors, we are 
depending on a solution that may not deliver. Thus, the more optimistic scenario is to try and 
piggyback the solutions for dynamic operation failures. The likelihood of success there is 
high; we just need to understand their combination with the functional failure context.

 


