

PIONEERS IN COLLABORATIVE RESEARCH®

Extreme Microsystems: Atomic Level Limits

Ralph Cavin and Victor Zhirnov Semiconductor Research Corporation

SRC Forum on Nanomorphic Systems

Stanford University, November 8&9, 2007

- As feature size scaling continues, integrated circuit technology might morph into integrated system technology at the atomic level
- Atomic scale considerations include
 - Energy source
 - Communication
 - Control Logic
 - Sensing

PIONEERS IN COLLABORATIVE RESEARCH®

Prototypical Example of an Extreme Microsystem:

Goal: Sense the state of single living cell

Electronic Cell

Atomistic View of System Integration

At this scale, we are literally designing with atoms

- Electrochemical cell
 - Galvanic cell
 - Fuel cell
- Radio-isotope energy sources
- Integrated Supercapacitors
- Radio-isotope energy sources
- Energy harvesting
 - Vibration
 - Electromagnetic

Luigi Galvani (1737-1798)

University of Bologna Known for: *bioelectricity*

Discovered the *extreme sensitivity* of the frog's leg to week electrical stimuli that elicits muscular contraction

The first biosensor

The first extremely sensitive electrometer (even by modern standards)

The concept of Animal Electricity

Salvani – Volta controversy

No animal electricity – dissimilar metals are the key

2007:

Convergence

Volta built the first battery in order to specifically disprove Galvani's theory

Electronics

In response, Galvani produced contractions in the absence of any metal by using nerve instead

[/]Biolelectronics

Luigi Galvani

Integrated Micro-scale Power Sources

Choice and scaling limits of micro-batteries

Example:

What occurs in a electro-chemical cell?

For every 1-2 electron that flow through the external connection, on the electrolyte side a metal atom must go into solution as a Me⁺ ion

Because the typical chemical bonding energy per electron is $\sim eV$, the typical emf $\sim 1V$

$$Li \rightarrow Li^{+} +e^{-}$$

$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

$$Cd \rightarrow Cd^{2+} + 2e^{-}$$

$$Fe \rightarrow Fe^{2+} + 2e^{-}$$

$$Pb \rightarrow Pb^{2+} + 2e^{-}$$

$$...$$

$$H_{2}$$

1-2 electrons~ 0.5-3 Volts

Integrated Micro-scale Power Sources SRC

Number of atoms in

cathode electrode

Choice and scaling limits of micro-batteries

Integrated Micro-scale Power Sources

Choice and scaling limits of micro-batteries

S Energy vs. Power Delivery

Energetics of an Autonomous Micron-Scale System Drives System Design

Communication technologies for Autonomous Micro-Scale Systems

Example: Uniformly radiated wireless communication

Wireless communications energy-size trade-off

3) Minimizing communication

should therefore maximize "cell intelligence"

Sec Energy Barriers in Materials

 Any electronic device contains at least one energy barrier, which controls electron flow. The barrier properties, such as height, length, and shape determine

tronic devices.

Resonant Tunnel Diode

R. Compano (Ed.) **Technology Roadmap for Nanoelectronics** (European Communities, 2001)

Generic Floorplan of a binary switch White spaces are required to provide for isolation and interconnect

CMOS scaling on track to obtain physical limits for electron devices

A Summary of ITRS Projections

Control Logic Unit for Autonomous Micro-Scale Systems

SRC[®] Complexity of Logic Unit

MINIMUM

Logic Unit must contain a minimum number of switches(e.g. transistors) if it is to do useful computation " if one constructs the automaton (A) correctly, then any additional requirements about the automaton can be handled by sufficiently elaborated instructions. This is only true if A is sufficiently complicated, if it has reached a certain minimum of complexity" (J. von Neumann)

 \sim 100 memory

If we consider a one-bit MPU as the minimum useful element, then the von Neumann threshold is ~150-200 switches

~100 ALU

SUnifying View on Switches and Sensors

GRE

Sensors can be regarded as binary switches, whose barrier is deformed by different stimuli other than charge, e.g. *mechanical, optical, thermal, chemical*

All information devices, both switches and sensors, contain at least one energy barrier, which controls information carriers. The barrier properties, such as height, length, and shape determine the device characteristics

SIntegrated Nano-sensors

- Sensors are Critical Components for microsystems
- What are scaling limits of the sensors?
 - Size-Sensitivity tradeoffs for different Stimuli?
- Single sensor may be not enough
 - Decision making data management often require pattern sensing and analysis
 - Arrays of Micro- and Nanosensors
 - Multiple Stimuli
 - High-resolution mapping
 - Example: Micro-palpation
 - High-resolution tactile imaging has many potential applications
 - Typical spatial resolution of tactile sensors> 1mm
 - We need resolution < $1\mu m$ with high sensitivity

Scale System Energetics of an Autonomous Micron-

Scale System: Thermal Aspects

The projected heat production should be easily tolerated

Atomistic View of System Integration

Function	Functional atoms/device	Energy atoms/bit
Communication	>5x10 ⁹	109
Logic	5x10 ⁹	10
Sensing	5x10 ⁷	<10

Summary: Extreme Microsystems

- Extremely-scaled CMOS technology should support computation and control for the ten micron cube
 - Beyond CMOS devices may offer more functionality at lower device count
- Technology issues aside, it appears that a careful atomiclevel trade-off could yield a functional system.
- Micron-scale energy sources are key to extreme microsystems
 - Design space is bounded by the limits of electrochemical sources
 - Alternative energy sources should be investigated
- Communication energy/volume expenditures is most costly activity – should therefore maximize "system intelligence"
- Potential for arrays of nano-scale sensors needs further exploration