

PIONEERS IN COLLABORATIVE RESEARCH®

SRC/NSF Forum on Nano-Morphic Systems

Steve Hillenius Semiconductor Research Corporation

Stanford University, November 8 & 9, 2007

- A trend, synergistic with scaling, is the use of semiconductor technologies for diverse integrated systems applications
 - Called Functional Diversification (FD)
 - SRC member companies have asked SRC to investigate basic research opportunities in FD
 - We appreciate your willingness to provide input to our research needs identification process

S Functional Diversification (FD)

- FD embraces the expansion of semiconductor technology applications to new domain
- FD requires integration of non-CMOS devices (sensors, actuators etc.) with traditional CMOS and other novel information processing devices
- FD is empowered by continued traditional scaling
- FD is fundamentally cross-disciplinary

Box do we define research issues associated with FD?

- Specific technology requrements are driven by the chosen application
- Requrements contain elements of
 - system architectures,
 - energy sources/conservation
 - SoC and SiP configurations
 - sensing etc
- Can we extract a set of broadly applicable, generic research needs for Functional Diversification?
- One approach, adopted by the forum, is to consider an extreme case of a functional integrated system; e.g. *Nanomorphic Systems*

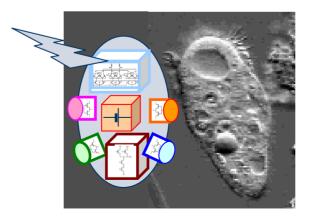
SR[®] Morphic architectures

- Having a specified form or shape
- Conveys that the computational structure is inspired by the physics, biology, etc. of the problem being addressed.
 - Morphic systems sense, filter, extract features, characterize, and report/take action
 - Example: Vision Chip, Electronic Cell etc.

- Forum Focus is on Extremely Scaled Microsystems
 - We have chosen a 'thought problem' from bioelectronics to focus thinking
 - We must comprehend the physical limits that govern what might be achieved at the scale of the living cell

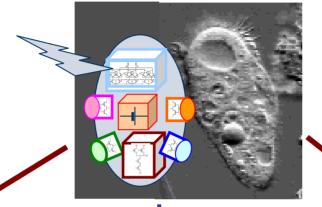
Definition of Research

- What are the research pathways and timelines that enable the design and realization of extreme microsystems within fifteen years?
- If SRC were to decide to engage in basic research in the Semiconductor Bioelectronic (SBE) systems area, what domains offer the best opportunities for SRC university research to make substantial contributions?
- While the forum is focused on long term horizons, we are also interested in research opportunities in shorter term time frame
 - Can we suggest a sequence of steps?
 - Semiconductor Bioelectronics Roadmap



PIONEERS IN COLLABORATIVE RESEARCH®

Prototypical example of a nanomorphic architecture: Autonomous Micron-Scale Systems


Goal: Sense the state of single living cell

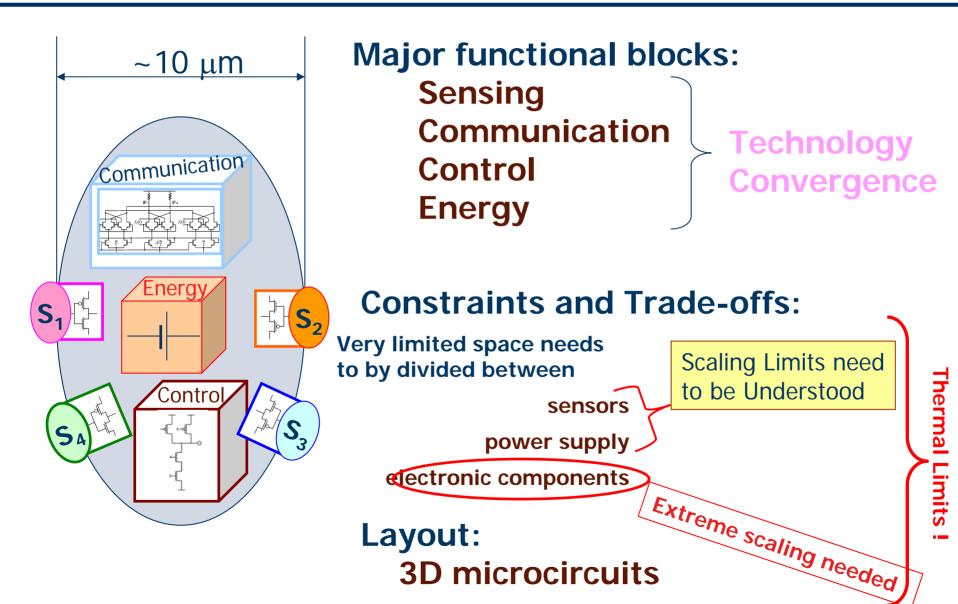
Examples of important cell's states to detect

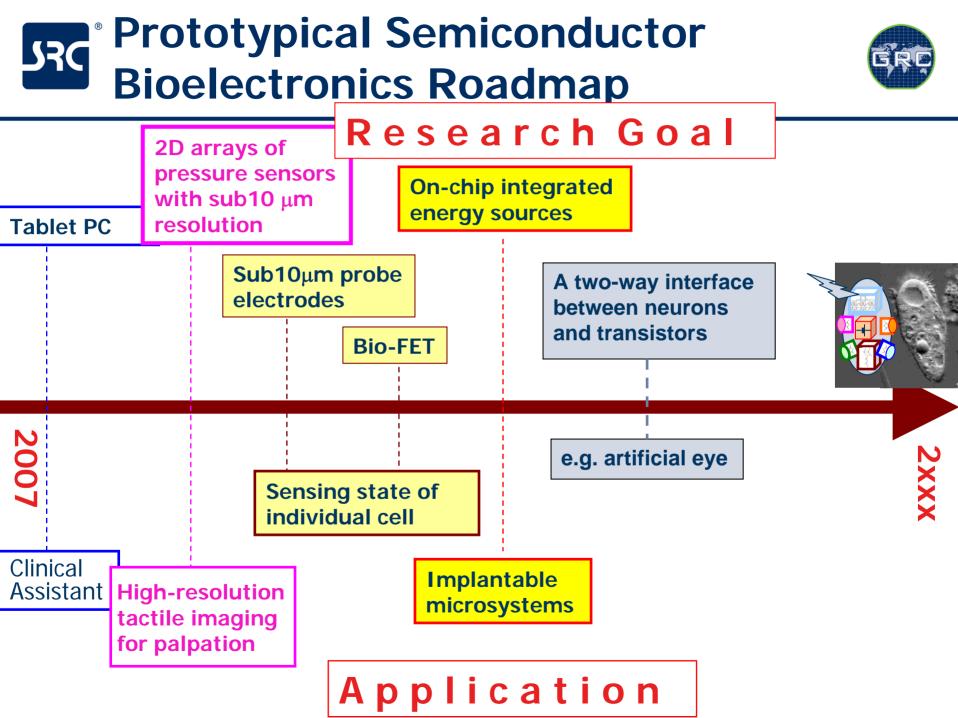
I. Alive or Dead?

Important for stem cell research

II. Normal or Cancer Cell?

Normal Cells:


Programmed cell death


Cancer cells: Do not stop reproducing Do not obey signals

Electronic Cell

Agenda – 11/8/2007

9:00A - 9:15A	Welcome and Forum Overview - Steve Hillenius, SRC	
		Торіс
9:15A - 10:00A	Presentation: Wentai Liu, UC/Santa Cruz	Bio-Interfaces
10:00A - 10:45A	Presentation: Steve Downey, Cymbet Corp.	Small Energy Sources
10:45A - 11:00A	Break	
11:00A - 12:30P	Panel I: BioFET Sensors for Living Cell	
	Gregory Timp, Univ. of Illinois/Urbana- Champaign	Biosensing
	Moritz Voelker, M. Planck Institute- Germany	BioFET
	Zhiyong Li, Hewlett-Packard	Si NW for Intracellular Sensor
	Robert Westervelt, Harvard	'Pseudo-cell' Nanofactories
	Mark Reed, Yale University	Si NW FET
12:30P - 1:30P	Lunch	

Agenda – 11/8/2007 (con't)

1:30P - 2:15P	Presentation: Joshua Smith, Intel	Wirelessly Powered Platform for Sensing and Computation	
2:15P - 3:00P	Presentation: Ralph Cavin, SRC	Emerging Research Architectures for Micro- Systems: Limits and Trade- offs	
3:00P - 3:15P	Break		
3:15P - 4:45P	Panel II: Autonomous Micron-Scale Systems		
	David Cumming, Univ. of Glasgow- Scotland	Wireless Telemetry/Lab-in- a-Pill	
	Kensall Wise, Univ. of Michigan	Wireless Microsystems	
	Jan Rabaey, UC/Berkeley	PicoNode	
	Carlotta Guiducci, Univ. of Bologna- Italy	Wireless Sensor Networks/Embedded Microsystems	
5:00P - 7:00P	Reception (heavy hors d'oeuvres)		

Agenda – 11/9/2007

8:00A - 9:45A	Panel III: Integrated Power Sources		
	Henry Hess, Univ. of Florida	Caged ATP Energy Sources	
	Woonsup Shin, Sogang UnivKorea	Mini-biofuel Cell (& Zn-AgCl batt)	
	Amit Lal, Cornell Univ. / DARPA	Radio-isotope Energy Sources	
	Gleb Yushin, Georgia Tech	Integrated Supercapacitors	
	Paul Wright, UC/Berkeley	Vibration-based Energy Sources	
9:45A - 10:00A	Break		
10:00A - 11:45A	Panel IV: Emerging Research Devices for Micron-Scale Systems		
	Jim Hutchby, SRC	ERD for Added Functionality	
	Stan Williams, Hewlett-Packard	Molecular Electronics	
	Meyya Meyyappan, NASA Ames	NW Memory	
	Victor Zhirnov, SRC	Ultra-low Power Devices	
11:45A - 12:30P	Brainstorming System Integration - Facilitator: Dan Herr, SRC		
12:30P - 1:30P	Lunch		
1:30P	Adjourn		