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Outline
• Radioisotopes

• Self-reciprocating cantilevers
• DC-biases for sensing and electronics

• RF-pulses
• Betavoltaics



Autonomous Sensor Systems

Kris Pister, UC 
Berkeley

1 mm3 battery ~ 
1.5 milliWatt--
Hour 



What is the smallest power source?
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•Ultimately Scaled Power Source

•Conversion efficiency can in principle reach 100%
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Energy Converter

Radioisotope thin-film

•Pout,R = Nout,R X Eavg

•Nout,Pm-147 : 830 Curie/g X 3.7X1010 emissions/s/Curie
•Eavg,Pm-147 : 63 keV

Pout,PM-147 : 0.309 W/g 2.05 W/cc

Emitted particles

Radioisotope Thin Film Energy:
Emission, not Fission or Fusion

*H. Flicker et al., “Construction of a Pm-147 Atomic Battery,” IEEE Trans. Electron Devices, 1964.
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Why Radioisotope Thin-films?

Microsystems
• Compact
• Long lifetime

Microbatteries
•Compact 
•High energy capacity

Fuel Energy Density 
Electrochemical  (Li-ion) ~10 kJ/cc
Hydrocarbon (Methanol) ~20 kJ/cc
Radioisotope (147Pm, over 5.2 yrs) 170000 kJ/cc

Reliability: A radioisotope decays exponentially in time at a rate 
independent of ambient conditions like temperature, humidity

High energy density 
fuel

Sensors and Wireless 
signal generators
•Low power

Radiation effects
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Safety: Radioisotopes Around Us

Tritium in Exit Signs
Americium-241 in 
Domestic Smoke 
Alarms

30% of Pacemakers 
implanted from 1971-
75 were radioisotope 
powered

• NASA’s RHU
• 33 Ci
• 1 Watt output
• 1.4 oz.
• 1 cubic inch
• 2.7 g of Pu-238 (oxide 

form)
• Rugged, reliable

Ionizing Mass Spec
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Isotope Average 
energy 

Half 
life 

Specific 
Power 

Estimated 
Range in 
Si (Max.) 

Radioisotope Comparison

 (KeV) (year) (W/g) (microns) 
63-Ni 17 100.2 0.0067 21 
3-H 5.7 12 0.33 2 

147-Pm 67 2.6 ~0.2 55
210-Po 5300 0.38 140 26
238-Pu 5500 88 0.56 27 
244-Cm 5810 18 2.8 28 

Alpha sources: 
• Chemical toxicity 
• Damage

Higher 
energy 
beta

Low 
energy 
beta- hard 
to 
integrate

Low energy beta-
easy to integrate
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Radioisotope Thin-film Powered 
Autonomous Microsystems

Implantable Medical 
Devices such as 

Pacemakers

Wireless Sensor Networks

Enabling compact, long-lifetime, inexpensive, & safe

100’μW continuously 10-100μW pulsed for sensing, 
1-100mW for communication
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Nickel-63 (63Ni)

Safety
•Penetration range of 

•primary radiation: <50 μm in most solids
•secondary radiation: None

•Effusivity: No effusion from thin-film sources even @ 400C
•Chemical toxicity: OSHA regulations permit work without 
any shielding, 2 millicurie annual intake limit*  

Power generation characteristics
•Half-lifetime: 100.3 years
•Specific activity: ~10 curie/g
•Erad,avg: 17.3 keV Pout,dens: 0.1-1 μW/cm2

Human Health Fact Sheet, Argonne National Laboratory, August 2005
Williams, D. F., “Recovery and purification of nickel-63 from hfir-irradiated targets," Oak Ridge 

National Laboratories, Tech. Rep., 1993
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Kinetic energy Charge

Thermionic, 
Thermoelectric

•Thermal to electric 
conversion

Ionization

• Liquids – photon 
creation – liquid 
scintillation

• Gases – ion-
electron generation

• Semiconductors: e-
h+ creation –
damage to lattice

Vacuum

•Direct 
charge 
collection 
and storage

Classical Categories of Radioisotope Power 
Sources

High volt

Radioisotope

Collector

e-

h+ e-

h+ e-
h+

LpLn

R
ad

io
ac

tiv
e

Betavoltaic

n-Si

p-Si
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Self-Reciprocating Cantilever

 

Charge separation leads to 
electrostatic attraction

Contact and dischargeImpulse excitation 
leads to oscillation 

Copper 
cantilever 

63Ni thin film 

e-
VGap 

Kinetic energy in the 
β-particles emitted

Mechanical energy stored 
in the deformed cantilever

H. Li, A. Lal, J.Blanchard, D. Henderson, Journal of Applied Physics, 2002.
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Radioisotope-powered Electro-Mechanical 
Power Generator (REMPG) 

Radioactive 
Decay 
Energy

Electrical 
Energy

Direct Charging (D-C)

Heat 
Energy

Electronic 
Excitation

Thermoelectricity

Betavoltaic

Dynamic

Mechanical 
Energy PiezoelectricityD-C
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The Handbuilt Device

Ni 63 Radioisotope emitter

Silicon

25 kΩ

•Pout= 5 W for 
30 ns

Piezoelectric plate (PZT)

50Ω

•Betavoltaic collector 
– 70 nW continuous•Pout= 850μW 

for 3 seconds

•Power output for 10 mCi
source
•Three power types produced 
from same device

Following: Transducers’ 03

Following: Hilton Head 04
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RPG Powered Photodiode/
Ring Oscillator
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     : Ring oscillator output 
--- : Laser driving signal 

C

RPG PZT 
Output 

Vout

Optical 
modulation

Ring 
oscillator 

•A photodiode and a rectifier 
and ring-oscillator are powered 
by RPG
•Ring oscillator frequency is 
controlled by signal from 
photodiode

IEEE Pervasive Computing - 05
R

ing 
O

scillator
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IRPG (Integrated Radioactive Power 
Generator)
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Integrated Radioisotope-powered 
Electro-Mechanical Power Generator 

(IRPG)

Radioactive 
Decay 
Energy

Electrical 
Energy

Direct Charging (D-C)

Heat 
Energy

Electronic 
Excitation

Thermoelectricity

Betavoltaic

Dynamic

Mechanical 
Energy PiezoelectricityD-C

qVgap

Erad,avg-
qVgap

q
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REMPG Modeling

m
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Measured REMPG Reciprocation 
Period (Trec)

Trec
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Measured Radioisotope-
Electromechanical Energy Conversion 

Efficiency

m



IRPG Power Supply Model

AlN IREMPG

Time (a.u.)

P o
ut

(a
.u

.)

Pout ~3μW across 525kΩ
for ~2s , @ 4.4%: 
Sensing and Computation

Remotely detected 50mV 
across 1MΩ @ 6feet: 
Communication

Pout ~0.5 nW
across 33MΩ for 
~7 min @ 2.2% 
: Sleep mode

P i
n

(a
.u

.)

Continuous Pin =50nW from 2mCurie Nickel-63 



What About Vibration  
Scavenging From RPG?
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Simulation and verification of 
continuous vibration modes

Points of 
instability

Optically measured 
vibration points

•Simulink simulation and experimental observation proving 
continuous reciprocation in the RPG for high efficiency (23%)
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The Bridge-Rectifier Problem

•70 nW continuous output, 
at a conversion efficiency 
of 23%, but output 
voltages can be low

• Loss of voltage headroom 
kills efficiency 
• Need low-voltage drop 
rectifier to improve efficiency

Ideally: 500mV

Time

V

Cstorage

Real: ~ 0 mV

Voltage drop = 150mV
Due to diode drop
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Zero-threshold voltage MOSFET Bridge 
Rectifier ?

•I-V characteristics of a diode 
connected zero threshold voltage 
n-MOSFET fabricated in the 0.5 
μm SoS technology 

Ideal

•Voltage drop = 450mV 
(measured in SoS 0.5 μm) 
for Vth = 0.455 V
•Zero threshold MOS could 
minimize voltage dropout
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Bridge Rectifier Comparison

• Radioisotope powered 
bias enables super-
efficient bridge rectifier

http://en.wikipedia.org/wiki/Image:Diodebridge1.png
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Self-powered DC bias generation

•Where Effective Electron Mass
Free Electron Mass
Barrier Height at the Interface
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Radioisotope-enabled 15 V source
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63Ni plate

Collector plate

Cbias

Electrical 
Equivalent circuit 
for source-
collector

• 10 pF capacitor in 
parallel, 2 milliCi 63Ni 
source
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Self-powered Humidity Sensor: Concept

Ids

Is CNi RNi

CPC

Cbias

Humidity Vgs Ids

ΔVgs≈ few V’s ΔId≈ 100’s μA

MOSFET Amplification 

Nickel-63 Polymer 
Capacitor

Electronic 
Chip

VNi

Sensor 
Suite 

Electronics

Vgs

CPC

Ids

Is CNi RNi

CPC RPC

Cbias

Humidity RPC IPC VNi Ids

ΔIPC≈ 10’s pA ΔId≈ 100’s μA

MOSFET Amplification 

VNI

IPC

Sensor 
Suite 

Electronics

Capacitive divider architecture Leakage resistance architecture
Collector

Rbias

e-

e- e-
e-

Feed through for exposing humidity sensor to 
ambient

Ω≈ GRPC 1000
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Self-powered Sensor Vision

Is CN RN

Vsw 

Small excursion physical 
measurand

Cantilever  
pull-in and 
discharge 

Sensor and cantilever amplification 

Electrically 
isolated 63NI   

Sensor 

e-

e- e- e
-

VNi 

(a)

(b)

(c)

Vsens

Collector 

Vsens Physical 
measurand VSW 

Cantilever biased 
near pull-in 

Transmission 
of wireless 
RF signal 

Metal vacuum package also acting as β-electron collector 

Feed through for exposing sensor to ambient 
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Are we Utilizing All Energy in IRPG?

H. Li and A. Lal, “Radioactively powered pressure transducer with rf pulse output," vol.1, Boston, 
MA, USA, 2003, pp. 53-6.

Cantilever

Radioactive 
Source

E-fieldB-field

Cantilever

Radioactive 
Source

E-fieldB-field
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Self-powered RF pulse generation
 Antenna 

Nickel63 

PZT 

Au 
electrode

C1 
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C3
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(b) Nickel63
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dt 
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Impulse excitation 

Displacement 
current  

PZT cantilever

Ni-63

Vacuum chamber

Oscilloscope C
13 pF

R
1 MΩ
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Signal frequency: 117 MHz
Vpp : 1.47 V
Initial distance:  100 μm
Period: 10 minute 25 seconds
Instantaneous power: 20 mW

•Parasitic energy in dielectric

•Impulse response of dielectric 
is excited
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•The current provided by the 63Ni 
source varies with the pressure

•This changes the reciprocation 
time of cantilever and RF-pulse

A typical pulse detected by the 
coil placed 0.1 m away from the 
DIP package, centered at 100 
MHz
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IREMPG RF Transmitter
Self-

powered 
ARC Radios



High Energy 
Density 

Betavoltaics
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SEMs of Microfabricated 3D Betavoltaic

 

Top surface Cleaved cross-section
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3D Betavoltaics vs. Planar Betavoltaics for 
Same Substrate and Process Flow 

4mm

0.16 cm2

planar 
betavoltaic

chip

0.64 cm2 3D 
betavoltaic

chip
VSEM=30kV, ISEM=2nA

Dark

Voc = 180 mV 
FF = 43 %
ηβ=1.61%

Voc = 410 mV 
FF = 74 %
ηβ=4.6%

High I0 Low I0

High Leakage leading to low efficiency

1 mm2 SEM electron beam irradiation 
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Radioisotopes in Microsystems

Radioisotope activity in Curies

Power 
Density/ 
Energy 
Capacity 

100 curies, 
6.3 mW/cc cont.

0.01 curies, 
10 μW/cc pulsed

0.001 curies for 
radiation effects

3D Betavoltaics

IREMPG

Self-powered sensors



Conclusions/Future
• Radioisotopes (in particular pure beta 

emitters) can provide nano-thin film sources 
energy

• High energy particles require impedance 
matches – MEMS provides this in multiple 
ways: Pulsed RF, Pulsed Mechanical, DC

• Self-powered Light Sources, Vacuum Pumps, 
Cyclotrons, Counting clocks, random 
number generators – nuclear physics on a 
chip!

• NEXT: Packaged Self-Powered Sensor Node 
– operate at high and low temp, 100 year 
lifetime
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