Radioisotope Energy Sources

Amit Lal*

Hui Li (Spansion), Hang Guo (Xiamen), Shyi-Herng Kan (SBIT), Rajesh Duggirala (Intel), Steven Tin (Cornell)

School of Electrical and Computer Engineering Cornell University

(* On leave as Program Manager @ Defense Advanced Research Projects Agency-DARPA)

Outline

- Radioisotopes
- Self-reciprocating cantilevers
- DC-biases for sensing and electronics
 - RF-pulses
 - Betavoltaics

Autonomous Sensor Systems

What is the smallest power source?

Ultimately Scaled Power Source

Conversion efficiency can in principle reach 100%

Radioisotope **Thin Film** Energy: Emission, *not Fission or Fusion*

Emitted particles

•
$$P_{out,R} = N_{out,R} X E_{avg}$$

• $N_{out,Pm-147}$: 830 Curie/g X 3.7X10¹⁰ emissions/s/Curie
• $E_{avg,Pm-147}$: 63 keV
→ $P_{out,PM-147}$: 0.309 W/g → 2.05 W/cc

*H. Flicker et al., "Construction of a Pm-147 Atomic Battery," IEEE Trans. Electron Devices, 1964. SonicMEMS Laboratory, Cornell University

Why Radioisotope Thin-films?

Reliability: A radioisotope decays exponentially in time at a rate independent of ambient conditions like temperature, humidity

Safety: Radioisotopes Around Us

Americium-241 in Domestic Smoke Alarms

Tritium in Exit Signs

- NASA's RHU
- 33 Ci
- 1 Watt output
- 1.4 oz.
- 1 cubic inch
- 2.7 g of Pu-238 (oxide form)
- Rugged, reliable

30% of Pacemakers implanted from 1971-75 were radioisotope powered

Ionizing Mass Spec

Radioisotope Comparison

Low energy betaeasy to integrate

Higher

energy

beta

ſ					,	
	lsotope	Average	Half	Specific	Estimated	-
	-	enerav	life	Power	Range in	
					Si (Max)	
		(KeV)	(year)	(W/g)	(microns)	enerav
	63-Ni	17	100.2	0.0067	21	beta- hard
	3-H	5.7	12	0.33	2 🔺	to
	147-Pm	67	2.6	~0.2	55	Integrate
	210-Po	5300	0.38	140	26	`
	238-Pu	5500	88	0.56	27	
	244-Cm	5810	18	2.8	28	

Alpha sources:

- Chemical toxicity
 - Damage

Radioisotope Thin-film Powered Autonomous Microsystems

100'µW continuously

10-100µW pulsed for sensing, 1-100mW for communication

Nickel-63 (⁶³Ni)

Safety

•Penetration range of

- •primary radiation: <50 µm in most solids
- secondary radiation: None
- Effusivity: No effusion from thin-film sources even @ 400C
 Chemical toxicity: OSHA regulations permit work without any shielding, 2 millicurie annual intake limit*

Power generation characteristics

- •Half-lifetime: 100.3 years
- •Specific activity: ~10 curie/g
- • $E_{rad,avg}$: 17.3 keV \rightarrow $P_{out,dens}$: 0.1-1 μ W/cm²

Human Health Fact Sheet, Argonne National Laboratory, August 2005 Williams, D. F., "Recovery and purification of nickel-63 from hfir-irradiated targets," Oak Ridge National Laboratories, Tech. Rep., 1993 SonicMEMS Laboratory, Cornell University

Classical Categories of Radioisotope Power Sources

Kinetic energy

Thermionic, Thermoelectric

•Thermal to electric conversion

Betavoltaic

Ionization

- Liquids photon creation – liquid scintillation
 - Gases ionelectron generation Semiconductors: e
 - h+ creation damage to lattice

Charge

•Direct charge collection and storage

Self-Reciprocating Cantilever

H. Li, A. Lal, J.Blanchard, D. Henderson, Journal of Applied Physics, 2002

11/06/2007

Radioisotope-powered Electro-Mechanical Power Generator (REMPG)

The Handbuilt Device

IRPG (Integrated Radioactive Power Generator)

vacuum cr

- 1. PZT top electrode
- Silicon cantilever
 Betavoltaic n⁺

- PZT bottom electrode
 Betavoltaic p⁺
- ver

- PZT top electrode
 Silicon cantilever
 Betavoltaic n⁺
- PZT bottom electrode
 Betavoltaic p⁺

Integrated Radioisotope-powered Electro-Mechanical Power Generator (IRPG)

SonicMEMS Laboratory, Cornell University

REMPG Modeling

Measured REMPG Reciprocation Period (T_{rec})

Measured Radioisotope-Electromechanical Energy Conversion Efficiency

SonicMEMS Laboratory, Cornell University

IRPG Power Supply Model

Continuous Pn =50nW from 2mCurie Nickel63

Remotely detected 50mV across 1MΩ @ 6feet: Communication

o_{in} (a.u.)

Pout (a.u.)

P_{out} ~3µW across 525kΩ
 for ~2s , @ 4.4%:
 Sensing and Computation

P_{out} ~0.5 nW across 33MΩ for ~7 min @ 2.2% : Sleep mode

Time (a.u.)

What About Vibration Scavenging From RPG?

Simulation and verification of continuous vibration modes

•Simulink simulation and experimental observation proving continuous reciprocation in the RPG for high efficiency (23%)

The Bridge-Rectifier Problem

- •70 nW continuous output, at a conversion efficiency of <u>23%, but output</u> voltages can be low
- Loss of voltage headroom kills efficiency
- Need low-voltage drop rectifier to improve efficiency

Zero-threshold voltage MOSFET Bridge Rectifier ?

•Voltage drop = 450 mV(measured in SoS 0.5 µm) for V_{th} = 0.455 V •Zero threshold MOS could minimize voltage dropout

 I-V characteristics of a diode connected zero threshold voltage n-MOSFET fabricated in the 0.5 μm SoS technology

Bridge Rectifier Comparison

Self-powered DC bias generation

Example: 10 nm oxide with 5 pA can generate 40V

Radioisotope-enabled 15 V source

Self-powered Humidity Sensor: Concept

Self-powered Sensor Vision

Are we Utilizing All Energy in IRPG?

Self-powered RF pulse generation

Self-powered Pressure Sensor

•The current provided by the ⁶³Ni source varies with the pressure

•This changes the reciprocation time of cantilever and RF-pulse

A typical pulse detected by the coil placed 0.1 m away from the DIP package, centered at 100 MHz

IREMPG RF Transmitter

Selfpowered ARC Radios

Figure 6. (a)Top-view photograph of the micro AIN-SI cantilever, and (b) schematic of wireless RF signal characterization set-up.

High Energy Density Betavoltaics

SEMs of Microfabricated 3D Betavoltaic

Top surface

Cleaved cross-section

3D Betavoltaics vs. Planar Betavoltaics for Same Substrate and Process Flow

High Leakage leading to low efficiency

Radioisotopes in Microsystems

Conclusions/Future

- Radioisotopes (in particular pure beta emitters) can provide nano-thin film sources energy
- High energy particles require impedance matches – MEMS provides this in multiple ways: Pulsed RF, Pulsed Mechanical, DC
- Self-powered Light Sources, Vacuum Pumps, Cyclotrons, Counting clocks, random number generators – nuclear physics on a chip!
- NEXT: Packaged Self-Powered Sensor Node

 operate at high and low temp, 100 year
 lifetime