# Thin Film Piezoelectric Energy Scavenging Systems for Wireless Sensor Networks

Paul Wright and Elizabeth K. Reilly Nanomorphic Systems at Stanford University on November 8 and 9, 2007







### **Wireless Sensor Networks**



# **MEMS Energy Scavenging Systems**

#### **Piezoelectric**

MIT - S. G. Kim Piezoelectric Micro Power Generator

#### Electrostatic

**UC Berkeley - Roundy** 

Electrostatic Vibrational Energy Scavenging Device

#### **Inductive (Magnetic)** MIT – A. Chandrakasan

Moving Coil Electromagnetic Transducer Power Generator

#### Thermal

#### Washington State University - Richards

P<sup>3</sup> Micro Heat Engine

\* All images available project websites







**Design Flow** 



### **Generic Vibration-to-Electricity Conversion Model**



$$m\ddot{z} + (b_e + b_m)\dot{z} + kz = -m\ddot{y}$$

z = spring defection

y = input displacement

m = mass

 $b_e$  = electrical damping coefficient

 $b_m$  = mechanical damping coefficient

k = spring coefficient

 $b = 2m\zeta\omega_n$ 

$$P = \frac{m\zeta_e A^2}{4\omega(\zeta_e + \zeta_m)^2} \quad ; \omega = \omega_n$$

# **Vibrational Energy Scavenging**

#### Mesoscale Proof of Concept



#### **Heterogeneous Bimorph**

- Two layers (piezoelectric, elastic)
- Proof mass
- Constitutive equations readily solved
  - adaptable to empirical modifications
  - adaptable to analytical modifications

#### Piezoelectric Material -PbZr<sub>x</sub>Ti<sub>1-x</sub>O<sub>3</sub>

- High piezoelectric coefficient
- Large range of solid solubility
- Well characterized properties in the bulk as well as thin film form

#### 40 mm x 3.5 mm, 2 g mass



### **Mesoscale Results**



7

# Outline

- Mechanical Design
  - Vibration Sources
  - Beam-Mass System
  - Proof of concept experiment

### • Material Considerations

- Epitaxy
- Growth Methods
- Manufacturability
  - MEMS Device Constraints (resonant frequency, power output)
  - Residual Stress
- Current Devices
- Preliminary Findings

# **Thin Film Fabrication**

#### **Pulsed Laser Deposition**



#### **PLD growth conditions**

- + 650°C 100 mtorr O<sub>2</sub>
- + Homogenized energy (±5%)
- + 2.5 J/cm<sup>2</sup> @ 3 Hz (≈ 6-7 Å/s)
- +  $Pb_{1.15}(Zr_{0.47}Ti_{0.53})O_3$  ferroelectric
- + SrRuO<sub>3</sub> oxide electrode
- + SrTiO<sub>3</sub>/Si substrate



### **Material Properties**

### Crystal Structure and Piezoresponse

a

#### Epitaxial PbZr<sub>0.47</sub>Ti<sub>0.53</sub>O<sub>3</sub> (PZT) thin films

- Out-of-plane (c-axis) epitaxy
- Surface Roughness 65 nm, rms 11 nm





**Surface Morphology** 



Piezoelectric response to -/+ 5 V 10

### **Material Properties**

Piezoelectric Coefficient and Polarization



# **Outline**

- Mechanical Design
  - Vibration Sources
  - Beam-Mass System
  - Proof of concept experiment
- Material Considerations
  - Piezoelectricity
  - Epitaxy
  - Growth Methods
- Manufacturability
  - MEMS Device Constraints (resonant frequency, power output)
  - Residual Stress
- Current Devices
- Preliminary Findings

### **Geometry and Resonant Frequency**

Heterogeneous Unimorph



Q.M. Wang, et. al., J. Appl. Phys., 83 3 (1999) 1702

## **Preliminary Power Modeling**

#### Assumptions

$$P = \frac{1}{2}CV^2\omega$$

- No coupling between cantilever beams
- Single mode bending
- Input acceleration =  $2.25 \text{ m/s}^2$
- Length =  $800 \ \mu m$
- -Elastic/ piezoelectric layer thickness =  $1 \ \mu m$

#### **Estimated Power Density**

- Single Beam 1-5 nW
- •Volume (1cm<sup>3</sup>) 100-200  $\mu$ W



Smits and Choi., IEEE Trans. Ultrason. Ferroelec. Freq. Control, **38** 3 (1991) 256

### **Fabrication Process**

### Piezoelectric and Elastic Layers



**1.** SrTiO<sub>3</sub> (STO) coated (20 nm) single crystal Silicon **[Motorola, Inc.]** 

**2. Deposition** of SrRuO<sub>3</sub> (SRO) bottom electrode, and PZT with pulsed laser deposition.

#### **Elastic Layer Deposition Methods**

\***Pt**- electron beam evaporation, Ti adhesion layer

\*Pd- thermal evaporation

\*Au- electron beam/thermal evaporation, Cr adhesion layer

**3.** Deposition of metallic elastic layer via e-beam evaporation/thermal evaporation

### **Fabrication Initial Attempt**

### Cantilever Array Structures



**4. Definition** of devices using photolithography

**5. Etch** heterostructure with Ar ion milling to expose Si substrate





### **Additional Stress Reduction**



# **Outline**

- Mechanical Design
  - Vibration Sources
  - Beam-Mass System
  - Proof of concept experiment
- Material Considerations
  - Piezoelectricity
  - Epitaxy
  - Growth Methods
- Manufacturability
  - MEMS Device Constraints (resonant frequency, power output)
  - Residual Stress
- Current Devices
- Preliminary Findings

### **Current Results**



Interdigitated beam design for maximum packing density

#### Cantilever array lies completely in-plane



#### Proof mass design



# **Preliminary Findings**

- Pulsed laser deposition can be used to grow epitaxial PZT films on Si substrate
- Thin film piezoelectric coefficient approaches bulk values, shows good switching capabilities
- Power modeling indicates a power density approaching 200  $\mu$ W/cm<sup>3</sup>
- Cantilever arrays fabricated and released using standard-CMOS compatible processes
- Residual stresses in film reduced





### **Preliminary Findings (con't)**



# **Future Work**

• Testing

Laser Doppler Vibrometer

- Modeling
  - Power modeling needs to reflect non-linear behavior
  - Damping
- Structure
  - Increase proof mass
  - Coupling Effects
- Electrode Design
  - Integration considerations