

Integrated Supercapacitors For Nano-Morphic Systems

<u>Prof. Gleb Yushin</u>, Georgia Institute of Technology School of Materials Science & Engineering Phone: (404) 385 - 3261; Email: <u>yushin@gatech.edu</u>


SRC/NSF Forum on Nano-Morphic Systems: Processes, Devices, and Architectures November 8-9, 2007, Stanford University, CA

www.nano-tech.gatech.edu

Supercapacitors

Charge storage:

- electrical double-layer (EDLC)
- fast and reversible faradaic redox reaction (pseudocapacitance)
- Energy storage depends on the ability of electrode to adsorb electrolyte ions under the applied potential

Advantages over batteries:

- Higher power
- Faster charging (seconds vs. hours)
- Less harmful (no heavy metals)
- Offer long cycle life (>1,000,000 cycles vs. 500)
- High efficiency (> 95%)
- Easy to detect the state of charge
- No fundamental limit for the voltage (voltage only restricted by the decomposition of the electrolyte)

Why attractive for nano-morphic systems:

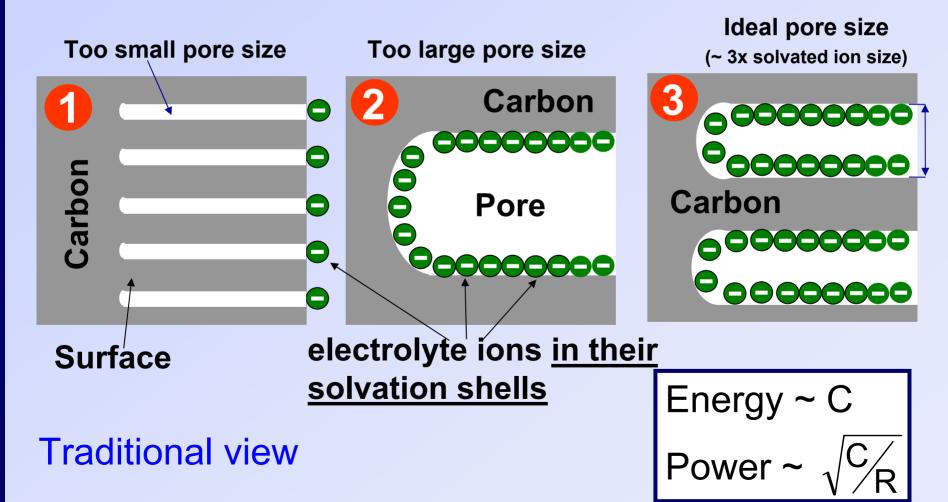
Provide peak power

- signal transmission
- electroshock (e.g. destruction of cancer cells*; electro-therapy / cell stimulation)
- activation (e.g. of bonding mechanism or

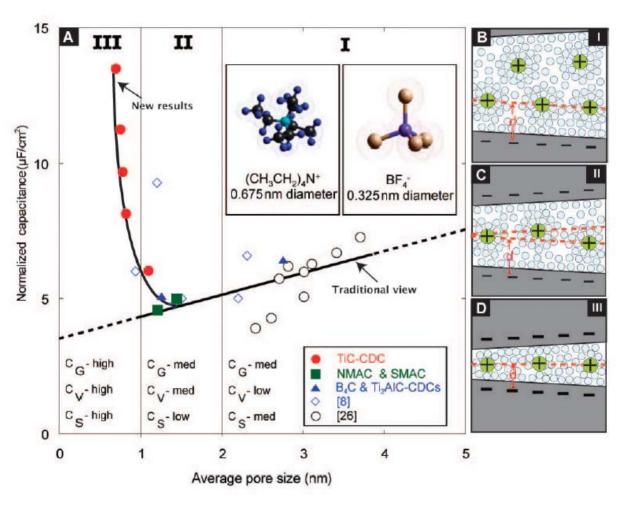
release of drugs that come near the target cell, etc.)

Opportunity to control ion concentration in the proximity

- sensing
- curing cells (e.g. by controlling injection of specific ions)
- selective ion adsorption depending on the ion size possible

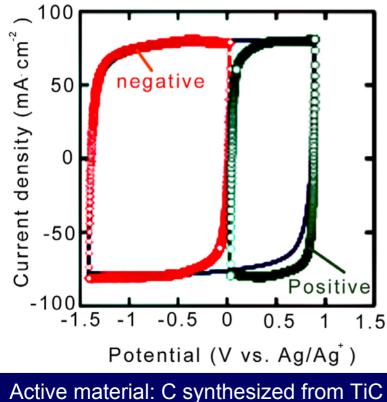

Simple construction / easy miniaturization and integration

- Long life (could be longer than human life)
- In combination with fuel cells will provide the highest energy and power density


How to increase the energy storage?

By better understanding the storage mechanisms!

Energy storage in EDLC


Distortion of solvation shells in sub-nm pores results in enhanced ion storage capacities

J. Chmiola, G. Yushin, Y. Gogotsi, et al., *Science*, 313,1760-1763 (2006)

[►] C~1/d

How to achieve selective ion adsorption? By better controlling the pore size and microstructure!

Active material: C synthesized from TiC and having the pore size of about 0.72 nm Cyclic Voltammogram taken at a scan rate of 20 mV/s in 3 electrode cell configuration

- Higher voltage drop on a negative electrode due to larger size of positive ions
- Difference in ions' size will affect their adsorption capacity if the pore size in electrode is tuned to dimensions of smaller ions

The size of anion – about 0.48 nm The size of cation – about 0.67 nm

J. Chmiola, et al., *Angewandte Chemi*, submitted (2007)

, due to packaging, two C in a series etc.

What are the fundamental limits of energy storage ?

1. Empirical estimation:

Energy in supercapacitor device $E \approx \frac{CV^2}{2} \cdot \frac{1}{8}$

Capacitance: (a) 6-30 uF/cm² in carbon; (b) up to 200 uF/cm² in functionalized carbon;

(c) up to 200 uF/cm² in transition metal oxides

If surface area = $2000 \text{ m}^2/\text{g}$ capacitance up to 4000 F/g could be reached

If max Voltage = 1V the Energy density *E* = 70 W·h/kg; if 3V, *E*=630 W·h/kg

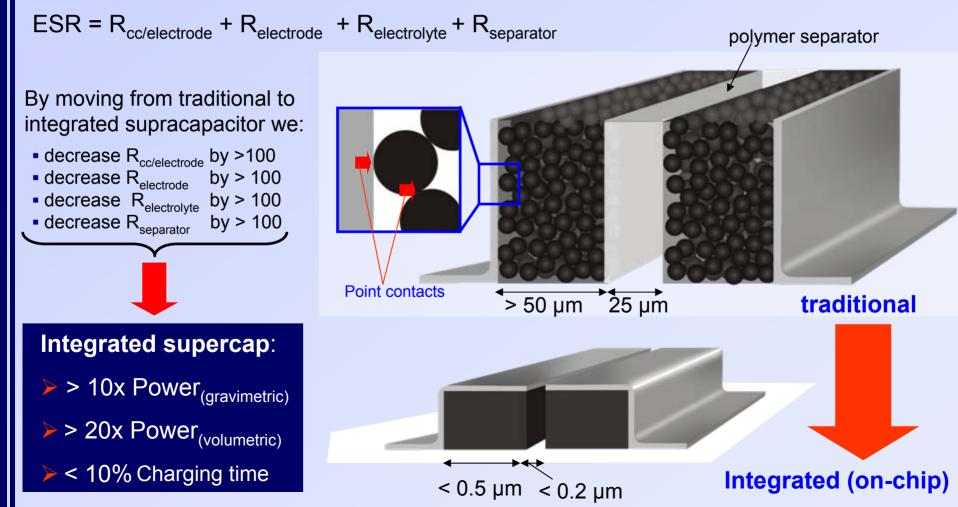
2. Semi-empirical estimation:

Assume formation of a close-packed monolayer of <u>solvated</u> ions (1e; d = 1.5 nm): 0.4 C/m²

If could be achieved @ 1V: Capacitance = 4,000 μ /cm² and **E** = 1,400 W·h/kg

If could be achieved @ 10V: Capacitance = 400 uF/cm² and *E* = 14,000 W·h/kg

3. Fundamental limit:


If 1e/atom in electrode: eNV/2 per electrode (1/2 of batteries **but** V_{supercap} could be >2x higher)

Will micro-fabrication affect supercapacitor performance ?

• Power achievable is related to the Equivalent Series Resistance (ESR)

- Posses attractive properties (higher power, faster charging, less harmful, very long cycle life, etc.)
- High V might be possible (voltage only restricted by the decomposition of the electrolyte)
- Fundamentally do not have to exhibit low energy density (state-of-the art performance might be limited by our poor understanding of ion propagation and adsorption mechanisms and by materials synthesis technologies)
- Going to micro- and nano- scale should increase power density by over 10 times
- Capable to control concentration of selected ions in the vicinity of the cells
- Might not need hermetic sealing (can use electrolyte of the extracellular matrix)