

PIONEERS IN COLLABORATIVE RESEARCH®

"Minimizing" the Effects of Physical Limits

Victor Zhirnov Semiconductor Research Corporation

Stanford University, November 8 & 9, 2007

© CMOS scaling on track to obtain physical limits for electron devices

Two-well bit – Universal Device Model

Generic Floorplan of a binary switch White spaces are required to provide for isolation and interconnect

System Level Energetics I: *Reliable Switching*

Computation at Π_{err} =0.5, and hence at E_{b} =k_BTln2 is impossible

In useful computation, $\Pi_{err} << 0.5$, hence barrier height larger than $k_B ln2$ is needed (larger total power consumption)

Question: How Much Larger?

System Constraint on Minimum Energy per Bit

Stor Uniformly Scaled Information Processor

- The maximum possible number *N* of binary switches in a close-packed array is inversely proportional to the square of the barrier length *L* (e.g. the FET gate length L_g)
 - $N=f_1(L) \leftrightarrow L=f_2(N)$

$$L_g \sim \frac{1}{\sqrt{20N}}$$

 The minimum barrier height in binary switches and therefore minimum operating voltage is a function of

$$\begin{bmatrix} L_g \sim \frac{1}{\sqrt{20N}} \\ \bullet & L_g \text{ (device level)} \\ \bullet & N \text{ (system level)} \end{bmatrix} \quad \begin{bmatrix} E_{b_{\min}} = f(N) \\ \text{for } \Pi = \Pi_{\text{crit}} \\ \Pi_{syst} = (1 - \Pi_{err})^N \end{bmatrix}$$

$_{\max} \sim \frac{1}{20L_g}$	$\frac{1}{2} \sim 10^{10} cm^{10}$	-2
	П _{сгіт} =0.9	
$L_{\rm g}$, nm	<i>N</i> , cm ⁻²	E _{bmin}
100	2.50E+07	0.65
50	1.00E+08	0.67
30	2.78E+08	0.69
20	6.25E+08	0.70
10	2.50E+09	0.71
9	3.09E+09	0.72
8	3.91E+09	0.72
7	5.10E+09	0.73
6	6.94E+09	0.80
5	1.00E+10	1.17
4	1.56E+10	1.90
3	2.78E+10	3.52

Compaction Effects on Minimum Operation Voltage

Energy – Errors dilemma

* Connecting Binary Switches via Wires in 2D (*L>2na, N electrons*)

For logic operation, a binary switch needs to control at least two other binary switches

Minimum switching energy for connected binary switches

© Operational reliability vs. Number of Electrons

 In interconnects, the number of electrons needs to be sufficient to guarantee successful communication between binary switches

Typical fan out (n=4) for logic

N electrons	Operational reliability
14	50%
20	75%
42	99%

We need many electrons for reliable communication

Mark Lundstrom/Purdue:		Node	MPU gate	N electron	E _{bit} /k _B T
	2003	100	45	1215	5.63E+04
	2004	90	37	812	3.76E+04
Why do we still operate so far	2005	80	32	532	2.26E+04
above the	2006	70	28	439	1.87E+04
fundamental limit: Why $10^5 k_{\rm p} T \ln 2$	2007	65	25	360	1.53E+04
and not k _B 7ln2?	2008	57	22	331	1.28E+04
We need a significant	2009	50	20	280	1.08E+04
number of electrone for	2010	45	18	245	9.47E+03
humber of electrons for	2012	35	14	155	5.39E+03
branched communication	2013	32	13	134	4.66E+03
between binary switches	2015	25	10	77	2.37E+03
$E \sim N \cdot E_b = N \cdot e \cdot V_{dd}$	2016	22	9	69	2.12E+03
$E - 22 + 1 + 6 + 10^{-19} + 0 + 7 - 2 + 5 + 10^{-19}$	<u>–18</u>	_ 60		40	1.07E+03
$E \sim 22 \cdot 1.0 \cdot 10 \cdot 0.7 = 2.3 \cdot 10$	22	6.05E+02			

 In interconnects, the number of electrons needs to be sufficient to guarantee successful communication between binary switches

N electrons	Operatio reliabili		
121	50%	E~12	20k _B T
198	75%	E~20)0k _B T
487	99%	E~50	00k _B T

$$\Pi_n = \left(1 - \left(1 - \frac{a}{L}\right)^N\right)^n$$

We need to minimize the number of long lines! Architecture Implications?

Scaling of 8080 MPU

Technology:	NMOS	Technol
Feature size:	6 μ m	Feature
# of transistors	s: 4500	# of tra
Die size:	5 mm x 4 mm	Die size:
Voltage:	5V, 12 V	Voltage
Frequency:	2 MHz	Frequen
Power:	1.5 W	Power:

Technology:	CMOS
Feature size:	6 nm
# of transistors:	4500
Die size:	5 μ m x 4 μ m
Voltage:	~0.5 V
Frequency:	~2 MHz-1GHz
Power:	~10nW-10µW

SRC[®] Different Facets of Scaling

Energy costs for fan-out: 2D vs.3D

Emerging 4 2003 ITRS PID

arch Logic Devices

				× ×				
Device	FET	RSFQ	1D structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	0.3 µm	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density (cm ⁻²)	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	700 GH z	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	250– 800 GHz	30 GHz	30 GHz	1 GHz	<1 MHz	1 MHz	30 GHz
Switching Energy, J	2×10^{-18}	>1.4×10 ⁻¹⁷	2×10 ⁻¹⁸	>2×10 ⁻¹⁸	>1.5×10 ⁻¹⁷	1.3×10^{-16}	$>1 \times 10^{-18}$	2×10^{-18}
Binary Throughput, GBit/ns/cm ²	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

- Compaction effects due to scaling can provide significant energy reduction
 - Fixed Architecture
- Alternative devices must offer size or energy benefits
 - ID structures
 - Molecular
- Topology optimization for energy reduction
 - Quasi 1D (e.g. nanowire) components arranged in 3D structures

- Memory optimization
 - Low-Voltage Non-volatile memory to replace SRAM
 - Quasi 1D (e.g. nanowire) components
- Communication
 - CNT antennas

PIONEERS IN COLLABORATIVE RESEARCH®

Back-Up

Control Logic Unit for Autonomous Micro-Scale Systems

SRC[®] Complexity of Logic Unit

MINIMUM

Logic Unit must contain a minimum number of switches(e.g. transistors) if it is to do useful computation " if one constructs the automaton (A) correctly, then any additional requirements about the automaton can be handled by sufficiently elaborated instructions. This is only true if A is sufficiently complicated, if it has reached a certain minimum of complexity" (J. von Neumann)

 \sim 100 memory

If we consider a one-bit MPU as the minimum useful element, then the von Neumann threshold is ~150-200 switches

~100 ALU

SRC[®] Energy Barriers in Materials

 Any electronic device contains at least one energy barrier, which controls electron flow. The barrier properties, such as height, length, and shape determine the characteristics of electronic devices.

R. Compano (Ed.) **Technology Roadmap for Nanoelectronics** (European Communities, 2001)

Guglielmo Marconi

