Victor Zhirnov
 Semiconductor Research Corporation

CMOS scaling on track to obtain physical limits for electron devices

$53 C$

Two-well bit - Universal Device Model

System Level Energetics I: Reliable

Switching

Computation at $\Pi_{\text {err }}=0.5$, and hence at $E_{b}=k_{B}$ Tln2 is impossible In useful computation, $\Pi_{\text {err }} \ll 0.5$, hence barrier height larger than $k_{B} \ln 2$ is needed (larger total power consumption)

Question: How Much Larger?

The probability that all N switches in a circuit work correctly

$$
\underset{\text { (Heisenberg) }}{\mathrm{N} \uparrow \rightarrow L \downarrow \rightarrow \Pi_{\mathrm{err}} \uparrow} \rightarrow \underset{\text { (Boltzmann\&Heisenberg) }}{\Pi_{\mathrm{err}} \downarrow \rightarrow \mathrm{E} \uparrow}
$$

-System Constraint on Minimum Energy per Bit

$$
\Pi_{\text {syst }}=\left(1-\Pi_{e r r}\right)^{N} \quad \begin{aligned}
& \text { The probability that all } N \text { switches } \\
& \text { in a circuit work correctly }
\end{aligned}
$$

$$
\Pi_{e r r}=\exp \left(-\frac{E_{b}}{k T}\right)+\exp \left(-\frac{2 \sqrt{2 m}}{\hbar} a \sqrt{E_{b}}\right)-\exp \left(-\frac{\hbar E_{b}+2 a k T \sqrt{2 m E_{b}}}{\hbar k T}\right)
$$

$$
\begin{aligned}
& \Pi_{\text {syst }}>\Pi_{\text {crit }} \text { e.g., } \stackrel{>0.5}{ } \stackrel{\text { lower boundary }}{ } \\
& \begin{array}{l}
\Pi_{e r r}=1-\Pi_{\text {crit }}^{\frac{1}{N}} \\
\Pi_{e r r}=f\left(E_{b}\right)
\end{array} \underbrace{\stackrel{E_{b_{\text {min }}}=f(N)}{ }}_{\left\lvert\, \begin{array}{|c|}
N_{\max } \sim \frac{1}{a^{2}}
\end{array}\right.}
\end{aligned}
$$

Uniformly Scaled I nformation Processor

- The maximum possible number N of binary switches in a close-packed array is

$$
N_{\max } \sim \frac{1}{20 L_{g}{ }^{2}} \sim 10^{10} \mathrm{~cm}^{-2}
$$ inversely proportional to the square of the barrier length \angle (e.g. the FET gate length L_{g})

$$
\text { - } N=f_{1}(L) \leftrightarrow L=f_{2}(N)
$$

$$
L_{g} \sim \frac{1}{\sqrt{20 N}}
$$

- The minimum barrier height in binary switches and therefore minimum operating voltage is a function of

$$
\begin{aligned}
& L_{g} \sim \frac{1}{\sqrt{20 N}} \\
& \text { - } L_{g} \text { (device level) } \\
& \text { - } N \text { (system level) } \\
& \Pi_{\text {syst }}=\left(1-\Pi_{e r r}\right)^{N} \\
& E_{b_{\text {min }}}=f(N) \\
& \text { for } \Pi=\Pi_{\text {crit }}
\end{aligned}
$$

$\boldsymbol{L}_{\mathbf{g}}, \mathbf{n m}$	$\boldsymbol{N}, \mathbf{c m}^{-2}$	$\Pi_{\mathbf{E}_{\text {crit }}}=0.99$
100	$2.50 \mathrm{E}+07$	0.65
50	$1.00 \mathrm{E}+08$	0.67
30	$2.78 \mathrm{E}+08$	0.69
20	$6.25 \mathrm{E}+08$	0.70
10	$2.50 \mathrm{E}+09$	0.71
9	$3.09 \mathrm{E}+09$	0.72
8	$3.91 \mathrm{E}+09$	0.72
7	$5.10 \mathrm{E}+09$	0.73
6	$6.94 \mathrm{E}+09$	0.80
5	$1.00 \mathrm{E}+10$	1.17
4	$1.56 \mathrm{E}+10$	1.90
3	$2.78 \mathrm{E}+10$	3.52

Compaction Effects on Minimum Operation Voltage

- Energy - Errors dilemma

STC
 Connecting Binary Switches via Wires in 2D ($\angle>2 n a, N$ electrons)

For logic operation, a binary switch needs to control at least two other binary switches

$$
E_{\mathrm{sw}}=2 E_{\mathrm{b}}+N E_{\mathrm{w}}=(N+2) k_{B} T \ln 2
$$

FO2

$$
n=2 \quad L=4 a
$$

$\mathrm{N}_{\text {min }}=5$

$$
\mathrm{E}_{\mathrm{sw}}=7 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \ln 2
$$

FO4

$n=4 \quad L=8 a$
$\mathrm{N}_{\text {min }}=14$
$\mathrm{E}_{\mathrm{sw}}=16 \mathrm{k}_{\mathrm{B}} \operatorname{Tln} 2$

N	$\boldsymbol{\Pi}$
1	0.00
2	0.00
3	0.01
4	0.03
5	0.06
6	0.09
7	0.14
8	0.19
9	0.24
10	0.29
11	0.35
12	0.41
13	0.46
14	0.51
15	0.56
16	0.60
17	0.65
18	0.68

${ }^{\circ}$ Operational reliability vs. Number of Electrons

- In interconnects, the number of electrons needs to be sufficient to guarantee successful communication between binary switches

> Typical fan out $(n=4)$ for logic

$$
L=8 a
$$

N electrons	Operational reliability
14	50%
20	75%
42	99%

We need many electrons for reliable communication operate so far above the fundamental limit: Why $10^{5} k_{B} T \ln 2$ and not $k_{\mathrm{B}} T \ln 2$?

We need a significant

 number of electrons for branched communication between binary switches$$
E \sim N \cdot E_{b}=N \cdot e \cdot V_{d d}
$$

$E \sim 22 \cdot 1.6 \cdot 10^{-19} \cdot 0.7=2.5 \cdot 10^{-18} \mathrm{~J}=600 k_{B} T$

- In interconnects, the number of electrons needs to be sufficient to guarantee successful communication between binary switches

$$
n=2 \quad L=100 a
$$

Operational

$$
\Pi_{n}=\left(1-\left(1-\frac{a}{L}\right)^{N}\right)^{n}
$$

N electrons	Operational reliability	
121	50%	$\mathrm{E} \sim 120 \mathrm{~K}_{\mathrm{B}} \mathrm{T}$
198	75%	$\mathrm{E} \sim 200 \mathrm{k}_{\mathrm{B}} \mathrm{T}$
487	99%	$\mathrm{E} \sim 500 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

We need to minimize the number of long lines! Architecture Implications?

Scaling of $\mathbf{8 0 8 0}$ MPU

1974

Technology:	NMOS
Feature size:	$6 \mu \mathrm{~m}$
\# of transistors:	4500
Die size:	$5 \mathrm{~mm} \times 4 \mathrm{~mm}$
Voltage:	$5 \mathrm{~V}, 12 \mathrm{~V}$
Frequency:	2 MHz
Power:	1.5 W

2020

Technology:	CMOS
Feature size:	6 nm
\# of transistors:	4500
Die size:	$5 \mu \mathrm{~m} \times 4 \mu \mathrm{~m}$
Voltage:	$\sim 0.5 \mathrm{~V}$
Frequency:	$\sim 2 \mathrm{MHz}-1 \mathrm{GHz}$
Power:	$\sim 10 \mathrm{nW}-10 \mu \mathrm{~W}$

SKC Different Facets of Scaling

Device Scaling

Decrease the physical size

Functional Scaling

 capability and/or application space
System Scaling

Decrease physical size of the system and increase both system capability and application space

Ultra Mobile Platform

Extreme Microsystems

S3C Energy costs for fan-out: 2D vs.3D

Generic topology of a 3D binary switch

For probability of correct communication >50\%

$$
E \quad \begin{gathered}
\\
E \sim N \cdot E_{h}=N \cdot e \cdot V_{d d} \left\lvert\, \begin{array}{l}
\text { More Fan-Out (Branching) } \\
\text { =More Computation }
\end{array}\right. \\
E \sim 3 \cdot 1.6 \cdot 10^{-19} \cdot 0.3=1.4 \cdot 10^{-19} \mathrm{~J}=35 k_{B} T
\end{gathered}
$$

Emerging . sarch Logic Devices 2003 ITRS PID RD Chapter 3D

Device	\checkmark			- $\begin{array}{r}\text { ¢ } \\ \text { 斑 }\end{array}$	$\frac{-\pi \cdot[1-}{\varphi}$.	\bullet -	$\stackrel{+(4)}{\square}$
	FET	RSFQ	$1 D$ structures	Resonant Tunneling Devices	SET	Molecular	QCA	Spin transistor
Cell Size	100 nm	$0.3 \mu \mathrm{~m}$	100 nm	100 nm	40 nm	Not known	60 nm	100 nm
Density $\left(\mathrm{cm}^{-2}\right)$	3E9	1E6	3E9	3E9	6E10	1E12	3E10	3E9
Switch Speed	$\begin{gathered} 700 \mathrm{GH} \\ \mathrm{z} \end{gathered}$	1.2 THz	Not known	1 THz	1 GHz	Not known	30 MHz	700 GHz
Circuit Speed	30 GHz	$\begin{gathered} 250- \\ 800 \mathrm{GHz} \end{gathered}$	30 GHz	30 GHz	1 GHz	$<1 \mathrm{MHz}$	1 MHz	30 GHz
Switching Energy,	2×10^{-18}	$>1.4 \times 10^{-17}$	2×10^{-18}	$>2 \times 10^{-18}$	$>1.5 \times 10^{-17}$	1.3×10^{-16}	$>1 \times 10^{-18}$	2×10^{-18}
Binary Throughput, GBit/ns/cm ${ }^{2}$	86	0.4	86	86	10	N/A	0.06	86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

Key Messages

- Compaction effects due to scaling can provide significant energy reduction
- Fixed Architecture
- Alternative devices must offer size or energy benefits
- 1D structures
- Molecular
- Topology optimization for energy reduction
- Quasi 1D (e.g. nanowire) components arranged in 3D structures

Additional Remarks

- Memory optimization
- Low-Voltage Non-volatile memory to replace SRAM
- Quasi 1D (e.g. nanowire) components
- Communication
- CNT antennas

Back－Up

SBC
 Control Logic Unit for Autonomous Micro-Scale Systems

$$
N_{t r}=10^{10} \cdot\left(10^{-3}\right)^{2}=10,000
$$

SRC Complexity of Logic Unit

MAXI MUM

$$
N_{t r}=10^{10} \cdot\left(10^{-3}\right)^{2}=10,000
$$

MI NI MUM

Logic Unit must contain a minimum number of switches(e.g. transistors) if it is to do useful computation
"if one constructs the automaton (A) correctly, then any additional requirements about the automaton can be handled by sufficiently elaborated instructions. This is only true if A is sufficiently complicated, if it has reached a certain minimum of complexity" 1 . von Neumann)

If we consider a one-bit MPU as the minimum useful element, then the von Neumann threshold is $\sim 150-200$ switches

STC Energy Barriers in Materials

- Any electronic device contains at least one energy barrier, which controls electron flow. The barrier properties, such as height, length, and shape determine the characteristics of electronic devices.

Guglielmo Marconi

