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Assumptions

There is a Reliability-Power Problem
— Reliability » variations, noise, soft-errors, leakage

— Power - complex apps, V4, scaling floor
An elegant solution to the Reliability-Power problem
— error-resiliency (rather than error-avoidance)

— Error-avoidance = worst-case design = expensive design
— Error-resiliency = better than worst-case (BTWC) design
Applications of interest tolerate non-zero error-rate

(arbitrarily small) /finite SNR (arbitrarily large)

— e.g. VIA, DSP/communications
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« ER — Power, latency and area overhead

« Communications-inspired techniqgues — view
nanoscale SOCs as communication networks
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Communication (-inspired) Design
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x100% of input combinations

VOS: Emulating BTWC Design
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Path Delay Distribution (PDD)
Worst-case design is expensive — power-hungry
— Supply voltage is limited by critical path delay

Voltage overscaling (VOS): permit a few paths to fail
Low-power but erroneous outputs

Long-tailed PDD is desirable — low error rate
Error-compensation friendly architectures
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Algorithmic Noise-Tolerance (ANT)

error-free

aciual % erri)rs
ya — yo + 77
| | >TH |- S\/
corrected
Ye =Y, +$

estimation errors

Employs statistical signal processing techniques

Main Block is designed for average case
— Makes intermittent errors

Estimator approximates Main Block output
Error-correction: Compare and replace
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ANT Techniques

X —*] Main Block

(RPR)

Main Block

Reduced-precision replica

| |>TH

SNR Performance

14

—&— No err control
——FP-ANT

—a— FBP-ANT
——RPRANT
—¥— MAP-ANT
—e— Desired

X
Prediction-based | [>TH
|
y
30
Yo O 25
Adaptive error-cancellation
ya — yO + 77 2070
\ o 15+
Main Block 9 % 10+
X 5
7i 0
-5

D 0.01 0.03 0.05 0.09 014 0.3 0.44

error rate

Copyright 2008, Naresh Shanbhag




Power-Latency Overheads

Block Taps | Mult | Add | Gate— | Complexity
Count Overhead%

Main Block | 32 16x16 | 33 34944 0

FP ANT 4 8X8 17 1184 3.4

FPB ANT 5 8X8 17 1480 4.2

RPR ANT 28 8X8 17 7696 22

MAP ANT 28 8X8 17 7800 22.3

Complexity overhead 5%-22%

 Power savings: 3X or more
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Soft NMR
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« Soft NMR: System reliability 100X better than NMR

— Makes soft decisions (estimation) then hard (detection)
— Exploits additional information (e.g., error PDFs)

* Power overhead: (N-1)X+voter
* Latency ovh: 1:voter (NMR)’ 1:estimator-l-tdetec:tor (SOft NMR)
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Fluid NMR

Max number of rexecutions (imax)
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« Dynamic voting strategy: F(component reliability,
latency, size output space)
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GSRC Project:
Stochastic Sensor Network-on-a-Chip

With Douqg Jones (UIUC)

Computation

Centralized Networked
Treat computational cores as sensors-on-a-chip

Statistically similar decomposition (SSD)
* Robust fusion

Overhead = fusion block complexity
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SNOC-based PN-Code Acquisition
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 Commonly wireless CDMA receiver kernel
* Polyphase decomposition

« 800X (better performance), 300X (reduced
performance variation), 40% (energy savings)
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Summary

« Communications-inspired design paradigm
— Treat SOCs as miniature communication networks

— Energy-reliability-latency trade-offs via error-
compensation

— Applications to on-chip computation, communication,
storage

 Algorithmic noise-tolerance (ANT)
— Statistical signal processing for error-compensation
« Stochastic Sensor Network-on-a-Chip (SSNOC)

— GSRC research — distributed computation

« Soft NMR, Fluid NMR — stochastic processors
for VIA
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