Communications-inspired Design for the Deep Nanoscale Era

Naresh Shanbhag

Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana-Champaign

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Assumptions

- There is a **Reliability-Power** Problem
 - Reliability \rightarrow variations, noise, soft-errors, leakage
 - Power complex apps, V_{dd} scaling floor
- An elegant solution to the Reliability-Power problem
 - → *error-resiliency* (rather than error-avoidance)
 - Error-avoidance = worst-case design = expensive design
 - Error-resiliency = better than worst-case (BTWC) design
- Applications of interest tolerate non-zero error-rate (arbitrarily small) /finite SNR (arbitrarily large)
 - e.g. VIA, DSP/communications

Error-Resiliency

- ER \rightarrow Power, latency and area overhead
- Communications-inspired techniques \rightarrow view nanoscale SOCs as communication networks

Communication (-inspired) Design

VOS: Emulating BTWC Design

Path Delay Distribution (PDD)

- Worst-case design is expensive → power-hungry
 Supply voltage is limited by critical path delay
- Voltage overscaling (VOS): permit a few paths to fail
- Low-power but erroneous outputs
- Long-tailed PDD is desirable \rightarrow low error rate
- Error-compensation friendly architectures

Algorithmic Noise-Tolerance (ANT)

- estimation errors
- Employs statistical signal processing techniques
- Main Block is designed for average case
 - Makes intermittent errors
- Estimator approximates Main Block output
- Error-correction: Compare and replace

ANT Techniques

Power-Latency Overheads

Block	Taps	Mult	Add	Gate – Count	Complexity Overhead%
Main Block	32	16x16	33	34944	0
FP ANT	4	8X8	17	1184	3.4
FPB ANT	5	8X8	17	1480	4.2
RPR ANT	28	8X8	17	7696	22
MAP ANT	28	8X8	17	7800	22.3

FIR filtering

Power > 3X • overhead WC BTWC design design

- Complexity overhead 5%-22%
- Power savings: 3X or more
- Latency overhead: t_{adder}+t_{comp}+t_{mux}

Soft NMR

- Soft NMR: System reliability 100X better than NMR
 - Makes soft decisions (estimation) then hard (detection)
 - Exploits additional information (e.g., error PDFs)
- Power overhead: (N-1)X+voter
- Latency ovh: t_{voter} (NMR), t_{estimator}+t_{detector} (soft NMR)

Fluid NMR

 Dynamic voting strategy: F(component reliability, latency, size output space)

GSRC Project: Stochastic Sensor Network-on-a-Chip

With Doug Jones (UIUC)

Centralized

Networked

- Treat computational cores as sensors-on-a-chip
- Statistically similar decomposition (SSD)
- Robust fusion
- Overhead = fusion block complexity

SNOC-based PN-Code Acquisition

- Commonly wireless CDMA receiver kernel
- Polyphase decomposition
- 800X (better performance), 300X (reduced performance variation), 40% (energy savings)

Summary

- Communications-inspired design paradigm
 - Treat SOCs as miniature communication networks
 - Energy-reliability-latency trade-offs via errorcompensation
 - Applications to on-chip computation, communication, storage
- Algorithmic noise-tolerance (ANT)
 - Statistical signal processing for error-compensation
- Stochastic Sensor Network-on-a-Chip (SSNOC)
 GSRC research → distributed computation
- Soft NMR, Fluid NMR → stochastic processors for VIA