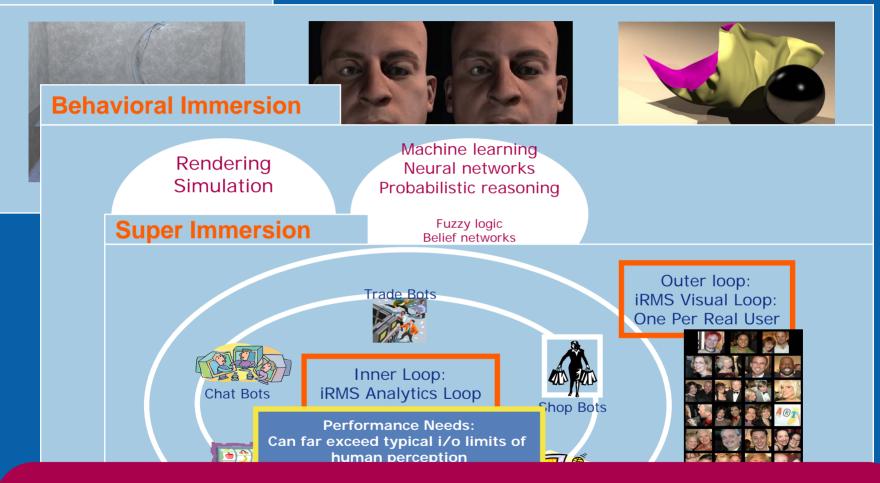

Immersive Computing

Pradeep K Dubey Senior Principal Engineer, Intel

VIA-2020 Forum, July 10-11 2008 Santa Cruz, California

Immersive Computing Challenge

Norman's Gulf



Can Norman's Gulf be bridged?

2 July 10, 2008

Three Stages of Immersion

Sensory Immersion

Computational requirements are huge, but ...

3

Limited by input/output limits of human perception

Where is my computer?

Visual Computing (Ocean of Clients/Devices)

private data, sensory inputs, streams/feeds immersive 3D graphics output, interactive visualization

> Massive Data Analytics (Cloud of Servers)

Intersection of massive data with massive compute real-time analytics, massive data mining-learning

... Architectural implications are far more radical

Computational substrate must undergo a sea-change!

July 10, 2008

Lea

Mode

Pradeep K. Dubey

pradeep.dubey@intel.com

sized

suals

What are we doing?

r				A				
Ad-hoc search			evel 1: Applications Derivative Pricing		Ray-Tracing		Computer Vision	
Semantic Search	Portfolio Selection				Physical Simulation			
Level 2: Mathematical Models								
Partitioning Based			Diffusion Models		Level Sets		Tracking &Reconstr.	
Generative non- linear	Quadratic Optimization				Particle Systems			
Level 3: Mathematical Techniques								
SVD			Interior-Point Method		Collision Detection		Path Planning	
K-means	Stochastic Simulation				Filtering&Anti -Aliasing			
Level 4.1: Numerical Algorithms								
Direct Solvers Iterat		tive Solvers		Monte C Simulati			Convex Collision (V-Clip, GJK)	
Level 4.2: Numerical Primitives and Data Structures								
Sparse BLAS123		D	Dense BLAS123			Structured matrix operat.		
, , , ,			Basic geometry primitives (triangle, box, convex)			Partition structures (grids, kd-tree, BVH)		

cturina Spide Bots

Workload-driven Architecture Research

SAAR (Scalable Applications and Architecture Research)

Summary

- Connected Computing
 It's all about three C's (above + content or data)
- Architectural Challenge
 - Moving the data real-time to where compute happens
- Algorithmic Opportunity
 - Massive data approach to traditional compute problems

Thank You

