
Custom Sensor-Based Embedded
Computing Systems

Frank Vahid
Professor

Dept. of Computer Science and Engineering
University of California, Riverside

Assoc. Director, Center for Embedded Computer Systems, UC Irvine

eBlocks project 2002-present, support provided by the National
Science Foundation and Intel

Ph.D. student: Susan Lysecky (2006, now Asst. Prof. at U. Arizona); several
MS and undergrad students also

Frank Vahid, UC Riverside 2/32

The Problem

What do these problems all have in common?

A working adult with an ageing
parent at home – did she get

out of bed today, is she
moving around?

A small store owner with
many employees – are
they in the storeroom,

breakroom, or out back?

A homeowner who sometimes
forgets to close the garage at night

Marines wishing to outfit a
building to detect whether
someone is inside or when

someone was inside

Frank Vahid, UC Riverside 3/32

The Problem

What do these problems all have in common?

Put motion sensors around
the house, monitor from the
web or cell phone – or even
be notified if no motion by
certain time in the morning

Put motion and sound
sensors throughout,
small LEDs (lights)
near cash register

Install contact sensor and light
sensor, and indicator next to the

bed

Place motion, heat,
and sound sensors in

rooms, halls,
doorways

Frank Vahid, UC Riverside 4/32

Why Can’t We Just Do This?

LEDreceive

contact
switch

light
sensor

AND

transmit

Widely usable
“Lego”-like
sensors don’t
exist today

Costly, hard to
use, plugged into
wall...

But new
technology makes
Lego-like sensor
blocks possible...

Frank Vahid, UC Riverside 5/32

Shrinking Processor Size/Cost Enables New
Solution

Make sensors smarter
By adding processor+battery

Today, tiny and cheap
Becomes a "block" easily
connected to other blocks

http://www.templehealth.org
Courtesy of Joe Kahn

Frank Vahid, UC Riverside 6/32

Shrinking Processor Size/Cost Enables New
Solution – eBlocks

Existing component view New "eBlock" view

Button yes/no

Light
Sensor

yes/no

Magnetic
Contact
Switch

yes/no

LEDyes/no

yes/no Beeper

Electric
Relay

yes/no

Frank Vahid, UC Riverside 7/32

eBlocks
Just connect blocks, and
they work

No programming knowledge,
no electronics knowledge

Button yes/no

LED

yes/no Beeper

yes/noLight
Sensor

yes/no

Frank Vahid, UC Riverside 8/32

eBlocks
Add intermediate blocks that compute and
maintain state

Spatial programming – more intuitive to non-CS people
than temporal programming

Button Beeper

LED

Light
Sensor

Tripper

Prolong

1 2 3 4 5 6 7 8 9

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Button

Toggle

Button Light
Sensor

LED

Frank Vahid, UC Riverside 9/32

What's Hard

(1) Finding right set of building blocks

Toggle

Splitter

Tripper

2-Input
Logic

3-Input
Logic

Splitter

4-Input
Logic

Splitter

Prolong (short)

1 2 3 4 5 6 7 8 9

Prolong (long)

1 2 3 4 5 6 7 8 9

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Too many – Overwhelming (too
much choice)

2 Yes
detector

2 No
detector

Too few – Overwhelming (too
much configuration)

SuperBlock

1 2 3 4 5 6 7 8 9

AND
OR

yes
no

When A is B is

then the output is yes

1

2

3 4

5: Splitter

1 2 3 4 5 6 7 8 9

6: ...

Frank Vahid, UC Riverside 10/32

What's Hard
(2) Making the blocks understandable

People NOT likely to read directions
Those that do are unlikely to understand

A B Output
no yesno no
no yesno yes
no yesyes no
no yesyes yes

Logic Block
configurable
DIP switch

A B

C
om

bine

A is yes, B is yes
A is yes, B is no
A is no, B is yes
A is no, B is no

The output should
be yes w

hen:

yes no:

Phrased truth table

yes no

the output
should be

A B

When the
input is

out
Combine

A is yes, B is yes
A is yes, B is no
A is no, B is yes
A is no, B is no

Phrased truth table embedded in sentence

yes no

The output
should be

When the
input is

out

A B
A B
A B
A B
A B

Combine
Colored truth table embedded in sentence

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Logic Sentence

Example: Combine block

Performed
extensive user

testing (over 500
students, kids,

and adults) over
two years

Most success

Frank Vahid, UC Riverside 11/32

What's Hard
(3) Batteries must last years, yet performance
should appear continuous

Blocks are off 99.9% of the time
time

f t f

(a)

(b)

(d)

(c)
errorerror

< <

f tf f f
< <

interpreted as

Developed theory to map eBlock events
to continuous time

Developed custom CAD tool to
automatically find the best block
parameter settings out of the
billions of possibilities

Frank Vahid, UC Riverside 12/32

eBlocks Example
"Garage Open at Night" detector
<10 minutes to build

Need to indicate garage
open at night – use LED
block

LED
Detect night-time – use
Light Sensor block

Light
Sensor

Detect garage door open
– use Contact Switch
block

Magnetic
Contact
Switch

Plug pieces together
and the system is done!

Use Combine block to
combine light sensor
and contact switch into
one

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Frank Vahid, UC Riverside 13/32

Graphical Simulator

Welcome to the eBlocks Simulator! In this area, you’ll find helpful hints on creating your own designs.

Click and drag an eBlock off of the “Available eBlocks” panel to add it to your design.
To connect two blocks, click and drag from an output port (colored circle) to an input port (gray circle).
A connection can be destroyed by clicking on a connected port.
To move a block around the workspace, click and drag its orange area.
Blocks can be moved into the trash can to delete them.
Green circles indicate that the port is sending a yes, red circles indicate that the port is sending a no, yellow
Circles indicate that the port is sending an error signal, and gray circles denote an input port.

User specifies and tests
block design
Java-based simulator

User chooses
between pallets
Blocks added by
dragging
User is able to
configure various
blocks by clicking on
switches
Connections created
by drawing lines
between blocks

Available eBlocks

Advanced ModeHide this panel

Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Green/Red
Light

Beeper

Output

Motion Sensor

Yes/No

Button

Light
Sensor

Sensors

Button

Light
Sensor

Available eBlocks

Advanced ModeHide this panel

Green/Red
Light

Beeper

Output

Motion Sensor

Yes/No

Button

Light
Sensor

Sensors Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Available eBlocks

Advanced ModeHide this panel

Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Motion Sensor

Yes/No

Button

Light
Sensor

Sensors

Green/Red
Light

Beeper

Output

Beeper

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Frank Vahid, UC Riverside 14/32

Graphical Simulator

Welcome to the eBlocks Simulator! In this area, you’ll find helpful hints on creating your own designs.

Click and drag an eBlock off of the “Available eBlocks” panel to add it to your design.
To connect two blocks, click and drag from an output port (colored circle) to an input port (gray circle).
A connection can be destroyed by clicking on a connected port.
To move a block around the workspace, click and drag its orange area.
Blocks can be moved into the trash can to delete them.
Green circles indicate that the port is sending a yes, red circles indicate that the port is sending a no, yellow
Circles indicate that the port is sending an error signal, and gray circles denote an input port.

User specifies and tests
block design
Java-based simulator

User chooses
between pallets
Blocks added by
dragging
User is able to
configure various
blocks by clicking on
switches
Connections created
by drawing lines
between blocks
User can create,
experiment, test and
configure design

Available eBlocks

Advanced ModeHide this panel

Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Green/Red
Light

Beeper

Output

Motion Sensor

Yes/No

Button

Light
Sensor

SensorsLight
Sensor

Available eBlocks

Advanced ModeHide this panel

Green/Red
Light

Beeper

Output

Motion Sensor

Yes/No

Button

Light
Sensor

Sensors Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Available eBlocks

Advanced ModeHide this panel

Compute/Communications

Prolonger

1 2 3 4 5 6 7 8 9

seconds

Once Yes, Stays Yes

rst

in

Toggle

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Motion Sensor

Yes/No

Button

Light
Sensor

Sensors

Green/Red
Light

Beeper

Output

Beeper

Combine

AND
OR

yes
no

When A is yes
no

B is

then the output is yes

Light
Sensor

Button

Frank Vahid, UC Riverside 15/32

eBlocks and Embedded Microprocessors

Can greatly simplify
coding

Button yes/no

yes/no 1/0

1/0 Micro-

processor
Light

Sensor

Tripper

Button

Frank Vahid, UC Riverside 16/32

And now for something completely different...

Warp processing
2001-present, supported by SRC, Intel,
IBM, Freescale, Xilinx
Ph.D. students

Roman Lysecky – Ph.D., June 2005, now Asst.
Prof. at Univ. of Arizona
Greg Stitt – Ph.D. June 2007, now Asst. Prof.
at Univ. of Florida, Gainseville
Ann Gordon-Ross – Ph.D. June 2007, now
Asst. Prof. at Univ. of Florida, Gainseville

Frank Vahid, UC Riverside 17/32

for (i=0; i < 128; i++)
y[i] += c[i] * x[i]

..

..

..

Circuits on FPGAs Can Sometimes Give Big Speedups

for (i=0; i < 128; i++)
y += c[i] * x[i]

..

..

..

* * * * * * * * * * * *

+ + + + + +

+ + +

+ +

+

C Code for FIR Filter

ProcessorProcessor

1000’s of instructions
Several thousand cycles

Circuit for FIR Filter

ProcessorFPGA

~ 7 cycles
Speedup > 100x
Pipelined -- >500x

Circuit parallelism/pipelining can yield big speedups

Frank Vahid, UC Riverside 18/32

Binary
Translation

VLIW
µP

Dynamic Translation
Motivated by commercial dynamic binary translation of early 2000s

x86
Binary x86 VLIW

x86 VLIW FPGA

VLIW
Binary

FPGA
µP

Binary

Warp processing (Lysecky/Stitt/Vahid 2003-2007): dynamically
translate binary to circuits on FPGAs

Performance

e.g.,
Transmeta
Crusoe
“code
morphing”

Binary
“Translation”

Frank Vahid, UC Riverside 19/32

µP

FPGA
On-chip CAD

Warp Processing Background

Profiler

Initially, software binary loaded
into instruction memory

11

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary

Frank Vahid, UC Riverside 20/32

µP

FPGA
On-chip CAD

Warp Processing Background

Profiler
I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
Microprocessor executes
instructions in software binary

22

Time EnergyµP

Frank Vahid, UC Riverside 21/32

µP

FPGA
On-chip CAD

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
Profiler monitors instructions and
detects critical regions in binary

33

Time Energy

Profiler

addaddaddaddaddaddaddaddaddaddbeqbeqbeqbeqbeqbeqbeqbeqbeqbeq

Critical Loop
Detected

Frank Vahid, UC Riverside 22/32

µP

FPGA
On-chip CAD

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
On-chip CAD reads in critical region44

Time Energy

Profiler

On-chip CAD

Frank Vahid, UC Riverside 23/32

µP

FPGA
Dynamic Part.
Module (DPM)

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
On-chip CAD decompiles critical region
into control data flow graph (CDFG)

55

Time Energy

Profiler

On-chip CAD

loop:
reg4 := reg4 + mem[

reg2 + (reg3 << 1)]
reg3 := reg3 + 1
if (reg3 < 10) goto loop

ret reg4

reg3 := 0
reg4 := 0

Decompilation surprisingly effective at
recovering high-level program structures
Stitt et al ICCAD’02, DAC’03, CODES/ISSS’05,
ICCAD’05, FPGA’05, TODAES’06, TODAES’07

Recover
loops,
arrays,
subroutines,
etc. –
needed to
synthesize
good circuits

Frank Vahid, UC Riverside 24/32

µP

FPGA
Dynamic Part.
Module (DPM)

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
On-chip CAD synthesizes decompiled
CDFG to a custom (parallel) circuit

66

Time Energy

Profiler

On-chip CAD

loop:
reg4 := reg4 + mem[

reg2 + (reg3 << 1)]
reg3 := reg3 + 1
if (reg3 < 10) goto loop

ret reg4

reg3 := 0
reg4 := 0+ + ++ ++

+ ++

+

+

+

. . .

. . .

. . .

Frank Vahid, UC Riverside 25/32

µP

FPGA
Dynamic Part.
Module (DPM)

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
On-chip CAD maps circuit onto FPGA77

Time Energy

Profiler

On-chip CAD

loop:
reg4 := reg4 + mem[

reg2 + (reg3 << 1)]
reg3 := reg3 + 1
if (reg3 < 10) goto loop

ret reg4

reg3 := 0
reg4 := 0+ + ++ ++

+ ++

+

+

+

. . .

. . .

. . .

CLBCLB

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

++

FPGA

Lean place&route/FPGA 10x faster CAD
(Lysecky et al DAC’03, ISSS/CODES’03, DATE’04, DAC’04,
DATE’05, FCCM’05, TODAES’06)

Multi-core chips – use 1 powerful core for CAD

Frank Vahid, UC Riverside 26/32

µP

FPGA
Dynamic Part.
Module (DPM)

Warp Processing Background

Profiler

µP

I
Mem

D$

Mov reg3, 0
Mov reg4, 0
loop:
Shl reg1, reg3, 1
Add reg5, reg2, reg1
Ld reg6, 0(reg5)
Add reg4, reg4, reg6
Add reg3, reg3, 1
Beq reg3, 10, -5
Ret reg4

Software Binary
88

Time Energy

Profiler

On-chip CAD

loop:
reg4 := reg4 + mem[

reg2 + (reg3 << 1)]
reg3 := reg3 + 1
if (reg3 < 10) goto loop

ret reg4

reg3 := 0
reg4 := 0+ + ++ ++

+ ++

+

+

+

. . .

. . .

. . .

CLBCLB

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

++

FPGA

On-chip CAD replaces instructions in
binary to use hardware, causing
performance and energy to “warp” by
an order of magnitude or more

Mov reg3, 0
Mov reg4, 0
loop:
// instructions that
interact with FPGA

Ret reg4

FPGA

Time Energy

Software-only

“Warped”

>10x speedups
for some apps

Frank Vahid, UC Riverside 27/32

Challenge: Decompilation
Requires aggressive
decompilation to recover
loops, arrays, ..., from
binaries
Results: Competitive with
synthesis from C

Example Cycles ClkFrq Time Area Cycles ClkFrq Time Area %TimeOverhead %AreaOverhead

bit_correlator 258 118 2.19 15 258 118 2.186 15 0% 0%
fir 129 125 1.03 359 129 125 1.032 371 0% 3%
udiv8 281 190 1.48 398 281 190 1.479 398 0% 0%
prewitt 64516 123 525 2690 64516 123 524.5 4250 0% 58%
mf9 258 57 4.5 1048 258 57 4.503 1048 0% 0%
moravec 195072 66 2951 680 195072 70 2791 676 -6% -1%

Avg: -1% 10%

Synthesis from C Code Synthesis after Decompiling Binary

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sp
ee

du
p

FIR
 Fi

lte
r

Be
am

for
mer

Vit
erb

i

Br
ev Url

BI
TM

NP0
1

ID
CT

RN
01

PN
TR

CH
01

Av
era

ge

High-level
Binary-level

Frank Vahid, UC Riverside 28/32

Developed ultra-lean CAD heuristics for synthesis, placement, routing, and
technology mapping; simultaneously developed CAD-oriented FPGA

e.g., Our router (ROCR) 10x faster and 20x less memory, at cost of 30% longer critical
path. Similar results for synth & placement
(EDAA Outstanding Dissertation Award 2006)

Challenge: JIT Compile to FPGA

60 MB

9.1 s

Xilinx ISE

3.6MB1.4s

Riverside JIT FPGA tools on a 75MHz ARM7

3.6MB0.2 s

Riverside JIT FPGA tools

Frank Vahid, UC Riverside 29/32

Experiments

Benchmarks: Image processing, DSP, scientific computing
Highly parallel examples to illustrate thread warping potential
We created multithreaded versions

Base architecture – 4 ARM cores
Focus on recurring applications (embedded)

TW: FPGA running at whatever frequency determined by synthesis

On-chip CAD

FPGAµP

µP

µP

µP

4 ARM11 400 MHz

Compared to

4 ARM11 400 MHz + FPGA (synth freq)
Multi-core Thread Warping

µP

µP

µP

µP

Frank Vahid, UC Riverside 30/32

Speedup from Thread Warping

Average 130x speedup

130 502 63 130 38308

0
10
20
30
40
50

Fir Prewitt Linear Moravec Wavelet Maxfilter 3DTrans N-body Avg. Geo.
Mean

4-uP
TW
8-uP
16-uP
32-uP
64-uP

11x faster than 64-core system
Simulation pessimistic, actual results likely better

But, FPGA uses additional area

So we also compare to systems
with 8 to 64 ARM11 uPs – FPGA
size = ~36 ARM11s

Frank Vahid, UC Riverside 31/32

µP

Cache

Dynamic Enables Expandable Logic Concept

RAM

Expandable RAM
uP

Performance

Profiler

µP

Cache

Warp
Tools

DMA

FPGAFPGA

FPGA FPGA

RAM Expandable RAM – System
detects RAM during start,
improves performance invisibly

Expandable Logic – Warp tools detect
amount of FPGA, invisibly adapt
application to use less/more hardware.

Expandable Logic

0

100

200

300

400

500

N-Body 3DTrans Prew itt Wavelet

Sp
ee

du
p

Softw are
1 FPGA
2 FPGAs
3 FPGAs
4 FPGAs

Frank Vahid, UC Riverside 32/32

Virtual Immersion

eBlocks: Enables customized
sensor-based system design by
non-experts

May lead to ...? “Wood and nails of
the sensor world”
Currently working with hearing-
impaired, aging

Warp processing (featured in this month’s IEEE
Computer)

Enables large speedups on certain
applications (e.g., image processing),
user can expand hardware without
changing software

	Custom Sensor-Based Embedded Computing Systems
	The Problem
	The Problem
	Why Can’t We Just Do This?
	Shrinking Processor Size/Cost Enables New Solution
	Shrinking Processor Size/Cost Enables New Solution – eBlocks
	eBlocks
	eBlocks
	What's Hard
	What's Hard
	What's Hard
	eBlocks Example
	Graphical Simulator
	Graphical Simulator
	eBlocks and Embedded Microprocessors
	And now for something completely different...
	Circuits on FPGAs Can Sometimes Give Big Speedups
	Dynamic Translation
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Warp Processing Background
	Challenge: Decompilation
	Experiments
	Speedup from Thread Warping
	Dynamic Enables Expandable Logic Concept
	Virtual Immersion

