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Moore’s Law: Binary Information Throughput

Motivation: ↑density
speed ↑

 functionality↑

What is the ultimate number of 
binary transitions per second  in 
a 1cm2 chip area?

- a measure of 
computational 
capability on 
device level

Why scaling? – To 
increase the Binary 
Information Throughput
(BIT)
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Computing Power: MIPS (μ) vs. BIT (β)
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THESIS
There appears to be a functional relationship between ultimate 
technology capability defined as the maximum number of binary 
transitions per unit time, β, and the millions of instructions executed 
per section, μ, executed by a single processor:

pkμ β=

k=10-7 and p=0.6

How can we 
increase MIPS?

sw

bit

t
n
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Number of binary 
elements 

Switching time 
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Turing-Heisenberg Rapprochement?

pkμ β=
Binary Information 
Throughput

a measure of 
computational capability 
on device level

Instructions per second
a measure of computational 
capability on the processor 
level

Alan Turing
Werner Heisenberg Ludwig Boltzmann

Can computational theory suggest new devices?  
Stan Williams @ Nanomorphic Forum

http://scienceworld.wolfram.com/biography/photo-credits.html


Nanoscale Devices

‘1’ ‘0’ ‘1’ ‘0’

Eb

This structure cannot be used for 
representation/processing information

An energy barrier is needed to 
preserve a binary state

xmin

We think that all devices operating in an 
equilibrium with thermal environment are 
governed by these relations, no matter 
what state variables are chosen!

2lnmin kT
h

=τ

“Boltzman constraint” on 
minimum switching energy

2lnmin TkE Bb =

“Heisenberg constraints”
on device size and speed

2ln2min mkT
x h

=

h≥ΔΔ px)exp(
Tk

E

B

b
error =Π

h≥ΔΔ tE

2ln3min TkE Bsw =

~10-21 J ~1.5 nm

~40 fs
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Two-well bit – Universal Device Model

a
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w w

Generic Floorplan
of a binary switch
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1) Upper Bound

2) IC (ITRS)

Joyner tiling
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How can we increase MIPS?

pkμ β=
sw

bit

t
n

=

Number of binary 
elements 

Switching time 
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Computing Power: MIPS (μ) vs. BIT (β)
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Computing Power: MIPS (μ) vs. BIT (β)
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Total Power Dissipation 
(@Ebit= kTln(2))

2
6105.1

cm
WPchip ×= T=300 K

The circuit would vaporize when it is turned on!JTkE

s
Jcm
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- A Catastrophe!

Limits of Cooling?
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Computing Power: MIPS (μ) vs. BIT (β)
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Energy Costs of Computation: 
Energy Consumed and Heat generated

bitbit
sw

bit EE
t
nP ⋅=⋅= β

Since each binary transition 
requires energy Ebit, the total 
power dissipation growth is in 
proportional to the information 
throughput:

We don’t 
know how to 
remove that 
much heat!!

A universal relation 
for  information 

processing devices

( )βμ f=

BIT
MIPS

Can we change f ?

2lnmin TkE Bb =

)exp(
Tk

E

B

b
error =Π



Biological Computation?

‘Computers Are Like Brains? Don’t They Wish’
The Wall Street Journal, July 9 2008
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Most complex information-management 
system in the universe…

Dell 8250 (Pentium® 4) Brain
Mass ~25  kg 1.4 kg 
Volume 34200  cm3 1350 cm3

MIPS       ~103 MIPS 108 MIPS
BIT     <1016 bit/s               1019bit/s

Power                     200 W 30 W (max)

~ 5 MIPS / W             3x106 MIPS / W
5x106 kBT / bit             700 kBT/bit

x 105

x 105

Dell 8250
(Pentium®4)

103 MIPS

When will computer hardware match the 
human brain?

108 MIPS

200 W =20,000 000 W

A CMOS machine 
at the limits of 
scaling would use 
prodigious amounts 
of power
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Computing Power: MIPS (μ) vs. BIT (β)
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Chip Multiprocessors

Ralph K. Cavin III and Victor V. Zhirnov

Semiconductor Research Corporation

IEEE/ACM International Symposium on Nanoscale Architectures

San Jose, CA, October 21-22, 2007
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Computing Power: MIPS (μ) vs. BIT (β)
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Computing Power: MIPS (μ) vs. BIT (β)
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Multi-Core Architectures

Multi-Core Architectures:   A number K of light-weight 
processors instead of one heavy-weight processor

Favorable Multi-Core Postulates
1) The collective action of all K cores is equivalent to the action of the single-core

2) All processors are engaged in useful work

3) Each core contains an error-detecting mechanism

4) The other cores are able to wait until the failed microtask computation on a core 
repeats the microtask to generate correct answer

A Multi-Core processor consists of a total of N binary 
switches organized in K supercells or cores. Each core in 
this organization is a lighter-weight general-purpose 
information processor, containing M binary switches: M=N/K

( ) )()
minmin

NEMENM bb <⇒< for the same error probability
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Extreme Multi-Core Analysis

L=3 nm              N=2.8E10
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Number of 
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in each core

Power consumption 
by K cores:

Limited energy 
improvement in 2D
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“Coreness” / “Weight”- Dilemma

The is a limit for a maximum number of transistors in 
1cm2 of chip area

A Multi-Core Information processor consists of a total of 
N binary switches organized in K supercells or cores. 

Each core in this organization is a lighter-weight general-
purpose information processor, containing M binary 
switches: M=N/K
In the limit:  

210
max 10~ −cmN

K
M

1010
=

What is smallest M?

System scaling limits need to be understood

(Lg=5 nm)
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Different Facets of Scaling

Device Scaling

Decrease the physical size

Extreme Microsystems
Electronic cell

System Scaling

Decrease physical size of 
the system and increase 
both system capability 
and application space

Ultra Mobile Platform
Example:Increased

Functionality
Increase system 
capability and/or 
application space

‘mobile supercomputer
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Scaling of 8080 MPU

Technology:         NMOS

Feature size:        6 μm

# of transistors:  4500

Die size:              5 mm x 4 mm

Voltage: 5V, 12 V

Frequency:           2 MHz

Power:                  1.5 W

Technology: CMOS

Feature size:        6 nm

# of transistors:  4500

Die size:                5 μm x 4 μm

Voltage: ~0.5 V

Frequency:         ~2 MHz-1GHz

Power:                ~10nW-10μW

1974 2020
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System scaling limits

Multi-core CPU
What is the maximum possible number of 
cores in  multi-core processors

‘Mobile supercomputers’
What is the smallest possible size of an 
intelligent ‘piconode’?

Minimal Turing 
Machine
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Von Neumann’s Threshold

“If one constructs the automaton (A) correctly, then any 
additional requirements about the automaton can be handled by 
sufficiently elaborated instructions. This is only true if A is 
sufficiently complicated, if it has reached a certain minimum of
complexity” (J. von Neumann)

‘Minimal’ Turing Machine

C

n

ν=?

Von Neumann threshold

Capability for general-purpose computing?:

C>1        Yes

C<1        No

1
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Binary switch abstraction: 
Generic floorplan and energetics

a

a

Eb

Eb

a a

Generic Floorplan of a binary switch

2
min 3aArea = TkE Bsw 3

min
=

⎟
⎠
⎞

⎜
⎝
⎛=

tile
JTkBε

a a a

nm
mkT

a 5.1
2ln2

==
h
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Connected Binary Switches

“0” “1”

Information-bearing charge

“0” “1”

Functional View

Physical View
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Connected Binary Switches

“0” “1”

Information-bearing charge

“0” “1”

Barrier-forming charge=

Functional View

Physical View
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a

a

Eb

Eb

a a

Interconnect abstraction: 
Extended Well Model

2a

FaL ⋅= 2min
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Connecting Binary Switches via Wires: 
Extended Well Model

L
a

CD =Π
A B

C D

L
a

N – the number of electrons

Example: L=4a

N=1→Π<0.25 In General: N

L
a

⎟
⎠
⎞

⎜
⎝
⎛ −−=Π 11

The problem is to ‘place’ the electron on the down stream 
gate – more than one electron is needed to ‘charge’ the line

Shot 
Noise
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Connecting Binary Switches via Wires 
(L>4a, N electrons)

For logic operation, a binary switch needs to control at least two 
other binary switches

A B
C D

L
a

L>2Fa F- fan out F=2    
L=4aN – the number of electrons

N Π
1 0.06
2 0.19
3 0.33
4 0.47
5 0.58
6 0.68Nmin=5

Shot 
Noise

2

& 11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=Π×Π=Π

N

DCDC L
a
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Minimum number of electrons in interconnect 
line for communication and fan-out

FN

L
a

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=Π 11

FN

k ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

111
2
1

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠

⎞
⎜
⎝

⎛
−

=

k

N
F

11ln

2
11ln

0
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k (number of tiles)

N

FO1

FO2

FO3
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FO6

2
1

=Π

k
a
L

=

N - number of electrons F – fan-out k – number of  tiles
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Minimum switching energy for 
connected binary switches

F=2    L=4a

Nmin=5

Esw=3Eb+NEw=(N+3)kBTln2

Esw=8kBTln2

F=4    L=8a

Minimum fan out Typical fan out

N Π
1 0.00
2 0.00
3 0.01
4 0.03
5 0.06
6 0.09
7 0.14
8 0.19
9 0.24
10 0.29
11 0.35
12 0.41
13 0.46
14 0.51
15 0.56
16 0.60
17 0.65
18 0.68

Nmin=14

Esw=17kBTln2

Communication between binary switches takes 
more energy than does changing switch state

Can we make communication more energy efficient?
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Energy per interconnect tile
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Long interconnect limit

Minimum interconnect limit
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FO4

tile
TkB18.1=ε

tile
TkB33.1=ε

ε ~ kBT/tile
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Floorspace Expenses of Communication 
between Binary Switches

Assumption: For each of 3 tiles of Binary Switch and for a fan-out 
of three, we need at least:

One contacting interconnect tile (3 total) and one connecting 
interconnect tile (3 total)

Total 6 inteconnect tiles per 
binary switch

aL 6~int
A typical interconnect length 
distribution for MPU (J. Meindl) n, cm-2

1.E+02 4.1
1.E+04 6.4
1.E+06 8.3
1.E+08 9.7
1.E+10 10.5

gLnL )(

Reality check:



38

Digital circuit abstraction: 
Generic floorplan and energetics and speed

Esw=3Eb+6Eb=9kBTln2

Operational energy of a circuit of 
n binary switches: 

Switching energy of one binary switch in a circuit (FO3)
3 switch tiles

6 wire tiles

2
min 8anArea ⋅= Joyner tiling

2ln
2
9 TnkE Bop =

Speed: τmin/tile
2lnmin kT

h
=τ ~40 fs

Switching delay of one binary switch in a circuit:

tsw=9τmin

(50% activity)
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1-bit ALU

ALUInput Data Output Data

Instructions

X

Y

C0

Z

C1

The minimal ALU does 22=4 operations on two 1-bit X and Y:
Operation 1: X AND Y
Operation 2: X OR Y
Operation 3: (X+Y)
Operation 4: (X+(NOT Y))

Jan Rabaey, 
Digital Integrated Circuits
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Minimal ALU abstraction: Energetics

AND

OR

OR

ADD
X+Y+C

4:1 
MUX

NOT

Y

ADD

X+Y+C

Total: 98 devices

Energy efficiency:
ALU

op

E
E

=η

TkTkE BBALU 300~2ln98
2
9

⋅⋅=

TkTkE BBAND 9~2ln3
2
9

⋅⋅=

TkTkE BBADD 84~2ln27
2
9

⋅⋅=

%3~
AND

η

%28~
ADD

η

3

3

27

272

33

3

All 4 units execute even though only one output is used
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Can we increase ALU efficiency?

De-parallelize inputs ?
Two input selectors are needed

Two 1:4 DMUX
33 devices each

AND

OR

OR

ADD
X+Y+C

4:1 
MUX

NOT

Y

ADD

X+Y+C

3

3

27

272

33

3

Example: AND operation

Active device count: 101

%3~
AND

η

Carnot’s equivalent for 
Computational Engine?
Thermodanomic entropy analysis may 
provide new insight on chip design
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Minimal ALU abstraction: Timing

AND

OR

OR

ADD
X+Y+C

4:1 
MUX

NOT

Y

ADD

X+Y+C

t1=9τmin
9τmin

54τmin

9τmin

36τmin

9τmin

54τmin

tn=n×9τmin

min50~ τALUt
~2 ps

~360 fs

n= # cascades
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X

ALUY

C0

Z

C1

I1 I2

S1

S2

S3

S4

S5

S6

Minimal CPU

98

6

6

6

6

6

1

1

1

1

1

1

Total: 134 devices
cycleTkTkE BBCPU /420~2ln135

2
9

⋅⋅=

Not included
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Minimal Turing Machine

6

Memory

Program Counter

I1
I2
S1
S2
S3
S4
S5
S6

Instruction
C

ontrol

8 bit per cycle

1

1

1
C1

I1 I2

S1

S2

S3

S4

S5

S6

X

ALUY

C0

Z

6

1

1

1

6

6

6

6

98
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Program Memory per operation

Operation 1: X AND Y
Operation 2: X OR Y
Operation 3: (X+Y)
Operation 4: (X+(NOT Y))

3 cycles per ALU operation
IN
Op
OUT

8 bit per cycle

24 bit Memory per operation

2-bit 
Counter

24

2-4 
DEC 12+

144
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Minimal Turing Machine

Memory

Program Counter

2-4 
DEC 12+

144

2-bit 
Counter

CPU

1

1

1
C1

I1 I2

S1

S2

S3

S4

S5

S6

X

ALUY

C0

Z

6

1

1

1

6

6

6

6

98

24

Total:  314
devices
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Turing Machine Implementation: 
Generic floorplan and energetics

Operational energy of the 
Minimal Turing Machine

aaaaanArea 5050250083148 222
min ×=≈⋅=⋅=Joyner tiling:

cycle
JcycleTkTnkE BBop

18104/9802ln
2
9 −⋅=≈=

amin= 1.5 nm

nmnmArea 7575min ×=

Per full CPU operation:

operation
J

cycle
JEop

1718 101043 −− ≈⋅⋅=

n=314Von Neumann threshold:
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Minimal Turing Machine: 
A summary

Energy per cycle
cycle

J18104 −⋅=

nmnmArea 7575 ×=Devices:  314
Device density: 5.6×1012 cm-2

Time per cycle ~2 ps

Power: 2μW
Power density : ~30 kW/cm2

BITS: 1014 bit/s MIPS: 2×105
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Computing Power: MIPS (μ) vs. BIT (β)
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Computing Power: MIPS (μ) vs. BIT (β)
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Computing Power: MIPS (μ) vs. BIT (β)
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Summary
The Minimal Turing Machine lies on the different 
performance trajectories from conventional computers

It has slope to meet brain performance

More detailed physics based analysis is needed
System thermodynamics of computation

Carnot’s equivalent for Computational Engine?

Lessons from Biological Computation?

Candidates for beyond-CMOS nano-electronics should 
be evaluated in the context of system scaling

e.g. spintronic minimal Turing Machine?
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Extreme Multi-Core Analysis
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