
Wen-mei Hwu
GSRC Concurrent Themeand UIUC

University of Illinois, Urbana-Champaign

Wen-mei Hwu
GSRC Concurrent Themeand UIUC

University of Illinois, Urbana-Champaign

Programming Frameworks
and Tools for Many-Core

Processors

Programming Frameworks
and Tools for Many-Core

Processors

July 10-11, 2008 SRC/NSF VIA 2020 Forum 2

VIA 2008 at UIUC
• QP Cluster: 16 nodes, each with 2

AMD duo-core CPUs and 4 NVIDIA
GPUs and 1 Nalletch/Xilinx HPC
FPGA card

– 32.5 TFLOSP SP peak + FPGA

• Apps include 3D model extractions,
video event extraction, human emotion
detection, physics modeling.

• MPI/CUDA programming with research
frameworks and tools

• To be upgraded to a 32-node, 128
TFLOPS single precision, 16 TFLOPS
double precision in August 2008

July 10-11, 2008 SRC/NSF VIA 2020 Forum 3

Why does programming need to be
low cost on VIA?

• The apps folks have not figured out the
right models and approaches!
– Most are still Ph.D. thesis efforts.
– Many development efforts must be done for

them to figure it out!
– High software development cost will kill app

innovation and productivity
– A large amount of new functionalities will have

to be created and maintained.

July 10-11, 2008 SRC/NSF VIA 2020 Forum 4

Why is programming many-core
processors costly today?

• Separate structure from CPU
– Data isolation and marshalling with pressure to

optimize away overhead
• Lack of standardized programming interface

– Each has its own app development models and tools
• Management of specialized execution and

memory resources
• Multi-dimensional optimizations required for

achieving performance goals

July 10-11, 2008 SRC/NSF VIA 2020 Forum 5

A different approach from the past
• Simple parallelism

– Focus on simple forms of parallelism for programmers
– Trade some generality and performance for productivity

• Power tools
– Leverage and strengthen app development frameworks
– Empower tools with specification, analysis and domain

information

July 10-11, 2008 SRC/NSF VIA 2020 Forum 6

High-level Frameworks for GPU
• Programming many-core GPUs requires restructuring computations

around its coordination capabilities
• Global communication is very complicated
• Approach: put this complication in a code generation framework

– Coordination is made explicit by expressing computation as MapReduce

• User specifies set of reduction functions, map & cleanup functions
• Framework generates efficient multistage reductions implemented in

CUDA kernels

Reduce
1 2

Map
Annotated CUDA Generated Code

Cleanup

Keutzer, UCB

July 10-11, 2008 SRC/NSF VIA 2020 Forum 7

Reduced Tuning Efforts Reduced Tuning Efforts

58.5

59.5

60.5

61.5

62.5

63.5

64.5

65.5

66.5

67.5

68.5

32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

Threads Per Block

Ti
m

e
(s

)

Hwu, UIUC

July 10-11, 2008 SRC/NSF VIA 2020 Forum 8

IA multi-core
& Larrabe NVIDIA GPU

NVIDIA
SDK 1.1

MCUDA/
OpenMP

CUDA-lite

CUDA-tune

CUDA-auto

1st generation CUDA programming
with explicit, hardwired thread
organizations and explicit
management of memory types and
data transfers

Parameterized CUDA programming
using auto-tuning and optimization
space pruning

Locality annotation programming to
eliminate need for explicit management
of memory types and data transfers,
potential ATI entry point

Implicitly parallel programming with data
structure and algorithm property
annotations to enable auto parallelization

July 10-11, 2008 SRC/NSF VIA 2020 Forum 9

Summary – A multi-level attack on
the parallel programming beast

• Simple programmer-level parallelism with power tools
• New Algorithm Frameworks

– MapReduce (UCB), Convolution (UIUC), etc.
• New Application Frameworks

– Video (UIUC), Game Physics (NVIDIA), etc.
• More consistent programming across HW platforms

– MCUDA (IA Multi-core/Many-core), CUDA-lite (ATI GPU, FPGA)
• Better heavy-lifting tools

– CUDA-tune, CUDA-auto

	Programming Frameworks and Tools for Many-Core Processors
	VIA 2008 at UIUC
	Why does programming need to be low cost on VIA?
	Why is programming many-core processors costly today?
	A different approach from the past
	High-level Frameworks for GPU
	Reduced Tuning Efforts
	Summary – A multi-level attack on the parallel programming beast

