SRC Board Retreat 2009

Research Opportunities at the Interface of Design and Technology

GLOBALFOUNDRIES

Mojy Chian SVP, Design Enablement July, 2009

- Industry landscape
- The race for performance (low power that is!)
- The race for TTM
- The race for lower cost
- Research needs
- Conclusion

Industry Landscape

Complexity Outpaces Design Productivity

R&D Expenditures in the IC Industry

Bifurcation in Technology Adoption

- Large IC companies are aggressively adopting new technologies
- Advanced technologies as a major competitive advantage
 Drimorily to reduce cost non function
 - Primarily to reduce cost per function
- Bifurcation in technology adoption
 - 1. An elite club on an aggressive technology adoption model
 - 2. The median of ASIC starts is still at 130nm & 90nm

Declining leading edge product designs?

Volume at advanced technologies is increasing

2009 Market Volume (No. of end-consumer devices)

Source: Bridge & GLOBALFOUNDRIES analysis, iSuppli Mobile Handset Tracker; iSuppli Consumer Platforms Market Tracker, Mercury Reports GPU, Gartner Reports GPU

Foundry leading customers

Customer base is consolidating

- Big fabless IC companies are getting bigger
- Small players are becoming less significant

Revenue from advanced technologies is increasing

- IC bets have become larger
 - Over \$500M in R&D to move to a new node

Early foundry-customer engagement

- Read: early design-technology engagement
- Technology-circuit analysis and trade offs to maximize value
 - Process-design co-customization

Concurrent design-process development

Customer specific program and interim deliverables

The race for performance Design-technology co-optimization

- Vcc scaling has significantly slowed down
 - Now dropping only about 50mv per technology node
- Smaller geometries give rise to higher leakage

Technology Innovations

Vectors of Technology-Design Co-Optimization

1. Power - Performance co-optimization

- Moving along the universal curve to attain optimum speed-power point
 - Vcc, Vt, Lgate, back bias optimization
 - Optimizing transistors at different bias points
- Add new devices to the process

2. Design - Process Variability co-optimization

- Understand circuit margins, critical specs and their process dependency
- Co-optimize process and design to minimize guard bands for variability

3. Layout - Design Rule co-optimization

- Assess impact of design rules (or DFM rules) on layout
- Optimize layout to use a subset of design rules with minimal impact to layout

Design/Technology Co-Optimization

 Co-optimization focuses on tuning critical device parameters to improve product performance

Collaborative work between design and technology is critical

In most cases, this would entail moving along the universal curve (a \rightarrow b)

- Same power-performance curve
- But it can also reduce power at the same performance (a \rightarrow c)

A Recent Co-Optimization Example

Technology	Performance	Static Power	Total Power
Baseline Device	1	1	1
Co-Optimized Device	1.04	0.7X	1

 Equivalent of up to about ¼ node advantages can be attained by circuittechnology co-optimization

The race for TTM

Concurrent design-technology development

Concurrent Technology & Design Development

SPICE Model Maturity

Speculative – 0.01

- Based on early prediction of the targets, validated with very early silicon
- Early design start
- Silicon-influenced 0.1
 - Based on the frozen targets, validated but does not match early silicon
 - Design in full motion

Silicon-based – 1.0

- Based on final, qual silicon
- Not much influence on the 1st tape out

Number of Models vs. Year

Significant increase in number of models over the years

Significant increase in modeling efficiency

The race for lower cost Improve yield and yield ramp

Quick Production Ramp

- The pace of advanced technology development continues
- With quick ramp to high volume
- Accelerated defect density reduction and yield ramp
- Emphasis on speed, accuracy, and agility across manufacturing

Automated Precision Manufacturing (APM)

GLOBALFOUNDRIRS Production Ramp

Agility Translates into Customer Value

Faster Cycles of Learning + Shorter Time to Mitigate Risk Result in Faster Time To Market & Higher ASP's for Customers

Research Needs & Conclusion

- ROI necessitates maximizing value from advanced technologies
- So the race intensifies

Research needs:

Not a comprehensive list – but a list in support of the topic:

- Process technology innovations aimed at lower power
- Target based process development and design methodology
- Tools and methodologies for predicting device performance prior to silicon
- Tools and methodologies for concurrent design and technology development
- Tools and methods for fast development and assembly of tech files and PDK
- Optimizing Restricted Design Rules (RDR) to minimize layout impact
- Integrated DFM and impact of DFM on design and manufacturing
- Manufacturing automation tools
- Tools and methodologies to aid fast silicon volume ramp and fast defect density reduction

- The sky is the limit
- Gravity is good research needs to be connected to vectors of value
- Opportunities are often in the interfaces
- Economic trends dictate technical research directions

