National Institutes of Health

NCI Research Networks Model for Collaboration with Bioelectronics Round Table

Larry Clarke, Cancer Imaging Program DCDT, NCI Detail: NIBIB Guest Scientist: NIST

Bioelectronics Round Table Research Triangle Park, NC November 4th 2008

National Institutes of Health

Presentation Scope

- NCI Imaging Research Networks
- NCI Proteomics Networks
- NCI Nanotechnology Initiatives
- Model for Research Partnerships

National Institutes of Health

3

Example Challenge: Imaging as a Biomarker for Therapy Response

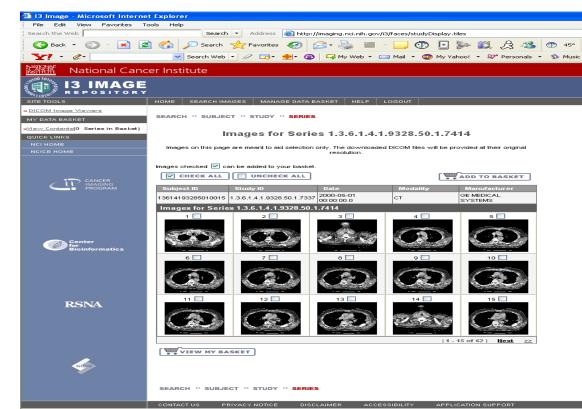
- Data Complexity-Measurement Uncertainty
 - Multi-Modality and Molecular Imaging
 - Multi-dimensional and heterogeneous data,
 - Resolution scale, cell to organ level
 - Associated physical measurement uncertainty that is often imaging platform dependent
 - Differentiate from biological measurement uncertainty
- Barriers: Convert data to knowledge, absence of reference standards for:
 - Image data collection-analysis across platforms
 - Data query and inter-operability of tools
 - Image data integration including meta data
 - Data integration with other laboratory biomarkers
 - Validation of clinical decision tools

National Institutes of Health 4

NCI-NIBIB-FDA NIST: Reference Image Database to Evaluate Therapy Response

- Develop a public resource of phantom and patient image and meta from on going clinical trials to that can be archived at NCI.
- Overall Goal: Develop a consensus on how to validate phantom and clinical data and develop reference standards for clinical decision tools
 - Engage all agencies of the federal government

National Institutes of Health


NCI, NIBIB, FDA, NIST, Academia, Industry

Public Resource of Image and Meta Data

Open Source tools to query data

Interoperable software tools to analysis the data

Open Science: Benchmarking Clinical Decision tools

National Institutes of Health PAR: U01: Quantitative Imaging as a Biomarker For Therapy Response. (Oct/Feb/June: 09-11)

Translational Research Goals: Implementation of quantitative imaging methods into phase 1 and 2 clinical trials for drug, radiation and IGI therapy.

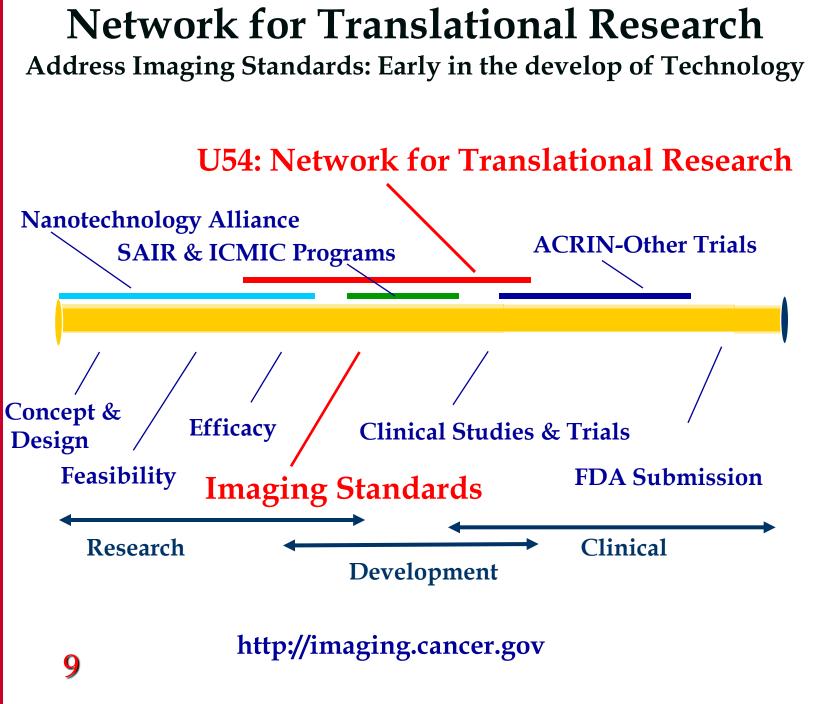
Quantitative Imaging Network: Interagency Effort

- Multi Disciplinary Teams: Oncologists, radiologists, physicists, computer and informatics scientists, includes academia-industry partnerships.
- Quantitative imaging methods: algorithms, modeling and statistical methods for change analysis
- Development of public reference resources
- » Open Source Architecture: Data collection/analysis

National Institutes of Health PAR:07 214: Academic-Industry Partnerships: \$500K/year. R01: Self assembled consortium

Translational Research Goals: Early cancer detection, diagnosis, IGI, and therapy response, including imaging as a biomarker

Research emphasis supported

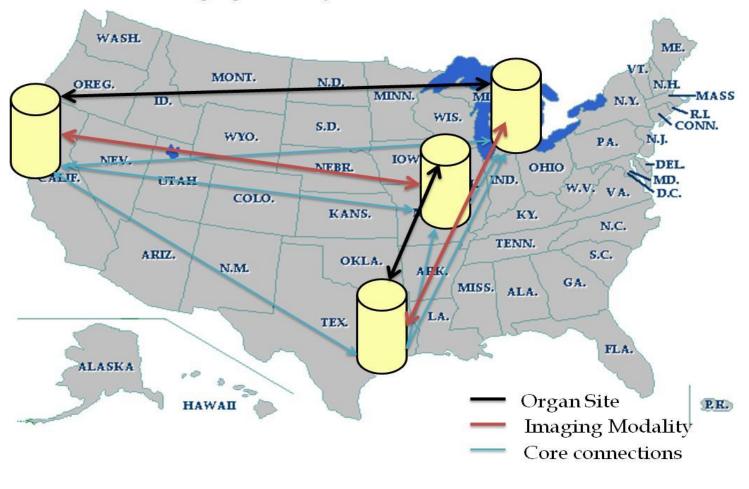

- ***** Imaging Platforms: Human and Pre Clinical
- Validation of multi-modality imaging platforms
- ***** Open source architecture and software tools
- Quantitative Imaging
- * Development of public resource for Q/C, phantoms, software tools assessment
- * Travel -Collaboration with FDA and NIST scientists
- * Multiple PI's: Option International PI's.

8

National Institutes of Health

New RFA: Network for Translational Research (U54) \$24M: Sept 2008

- U54: Specialized Resource Center
 - Develop a consensus on how to optimize and validate next generation of new multi modality quantitative imaging methods for multi site clinical trials.
 - External Tomographic Imaging: PET, MRI, US
 - MEMS Imaging on a Chip/Catheter: Optical/US
 - Imaging: Cellular to the organ level
- Four Multi Site Teams: Steering Committee
 - NCI, NIBIB, caBIG, FDA, NIST representation
 - Advisory Committee: Imaging Societies/Industry
 - Partnership with industry is critical.



National Institutes of Health

National Institutes of Health

Goal: Networking at Multiple Levels

Network Interconnectivity at the Organ Site, Imaging Modality, and Research Core Levels.

National Institutes of Health

NIST: Reference-Traceability Standards Areas of Engagement

Physics Laboratory:

- PET CT phantoms: Ge-68 Source: Geometry Factors
- Optical: Imaging/Spectroscopy: Tissues

IT Laboratory:

- Software Visualization
- Imaging Ontology: Imaging to Diagnosis
- Benchmarking software tools
- NCI LIDC, RIDER, IOA ADNI, other NIH sources
- BIOCHANGE 2008: Change analysis tools <u>http://www.itl.nist.gov/iad/894.05/biochange2005/Biochange2008-webpage.htm</u>

EEL Laboratory

- MRI, DCE MRI and Flow-Phantoms
- Enhanced MRI Nano Carriers: Modeling

National Institutes of Health

Summary

Research networks provide a excellent model for partnership with industry.

Consensus on research methods is important for clinical translation and commercial dissemination.

Provides an opportunity to explore Public Private Partnerships (Foundation of NIH)