

BioElectronics: An Industry Perspective

Madoo Varma, Ph.D.

Director, Integrated Biosystems Lab
Intel Research, Corporate Technology Group

Within You

With You

Around You

The Evolution of Biosensor Applications

Within You

With You

Around You

Present

Medical Implant

Pacemaker

- First wearable pacemaker developed in 1957
- Today's implantable pacemaker has complex algorithms, inputs, and outputs

Glucose Monitoring

Continuous Monitoring

- FDA or CE approved, while requiring calibration with reference method (finger sticks glucose monitor)
- Monitoring 3-5 days duration
- Wireless transmission to carry-on readers

Environmental Monitoring

- With miniaturization and network capability
- Tracking devices
- Bio-Sensing with live microbial for sampling

Evolution of Biosensor Applications

Near Future

- Video processor converts image into stimulation pattern with 60 electrode array pulses optic nerve
- Heavily dependent upon microprocessor performance
- Efforts to improve on electrode density, processing, connectivity, and power scheme

Non-invasive

- Non-invasive wrist band device measuring glucose by electromagnetic resonance with continuous monitoring
- Performance meets FDA standards for accuracy
- Self-calibration

Toxic Site Mapping with Bio-sensing

- Synthetic biology designed multifunctional organisms with selfgenerating energy and sensing capabilities for toxin detection
- With potential to combine with physical sensors, networking and informatics for large scale study

Future

Neural Prosthesis (Brain Computer Interface)

- Speech prosthesis nearing commercial availability
- Powerful computer processor required
- Complex real-time interface

Nano-robot

- Nano-robot in blood stream with biochemical sensors of multiple functions
- Nano-power generator allows long-term real-time monitoring

Metagenomics Soil Monitoring

- Comprehensive ecological study (for soil cleanup) with next-generation DNA sequencing tool
- Need for rapid assay processing as well as data processing capabilities

Law of Accelerating Returns Moore's Law One Example

Information Technologies (of all kinds) double their power (price performance,

Has Bio Field reached the Critical Mass?

Accelerating rate of return as knowledge accumulates?

Bioelectronics Roundtable * November 4, 2008

Medical Implants
Genomics
Human Genome
Sequenced
Microarrays/
Biomarker Discovery
Accelerates
Pattern Recognition
Bioinformatics Rules
Function Elucidation
Evidence Based Medicine
Personalized Medicine
Neuromorphic Systems

What Is Limiting this Acceleration?

Medical Research & Dx Need: To Type Rare Cells/Analytes In Complex Mixture Eg., HIV, Cancer, or Environmental Agents Etc

Bioelectronics Roundtable * November 4, 2008

Biosensor Application Requirements-

Data points/test

Opportunity for Convergence

Opportunity at the Intersection of Two Fields

Parallel data collection using biosensor arrays

Rapid data processing and efficient data access

Fast results using parallel computing

Various Array Performance Characteristics

Massively Parallel Sensor Array Platform

Semiconductor-based biosensor platforms will enable personalized medicine and more...

Challenges

- Multiple marker profiling
 - Low cost
- High precision/specificity
 - High sensitivity
 - Rapid test

Approach

Develop a high density silicon sensor array for highly parallel single molecule sensing

Vision

Generate and access analyte information anywhere and any time

Rationale

- •Analytes are charged or can be made charged \rightarrow detectable by semiconductor sensors
- •Protein and DNA in nano dimensions -> comparable to node dimension of semiconductor technology
- •Many individual molecules in a sample \rightarrow array of billions of sensors manufactured by semiconductor technology

Key Risks

Electrically detectable chemical species

Reaction specificity

Sequence-specific Signal

Signal strength

Signal amplification

Signal diffusion

Signal confinement

Sensor sensitivity

Signal detection

Sensor/Chem integration

System/circuitry integration

Opportunity and Challenges

 Bio-compatibility: understanding surface interactions at the intersection of biology and silicon

 Designing for manufacturability: Compatibility with standard CMOS fabrication methods

 Cost/Volumes for intended applications modularity