



GRC Summer Study

SRC-GRC Strategic Planning Summary Steve Hillenius

June 29, 2009

- Continue scaling research in devices and technology
- Memory
- Functional Diversification Applications
 - Bio-compatibility
 - Nano-bio electronics
 - Integrated sensors
 - Integrated energy/power issues
- Homogeneous/Heterogeneous Multicore Architectures
 - Multicore architectures
 - Morphic architectures
- Analog and Mixed Signal Design & Technology
 - Integrated applications
- Coping with Variability/Reliability Issues
- Design and Technology Solutions for Thermal/Power

- Functional Diversification Applications
 - System-level specification, coverage, mapping, verification, test
- Design Solutions for Thermal/Power
 - System-level power and thermal estimation and reduction
- Coping with Variability/Reliability Issues
 - DFM through robust and resilient design for both analog and digital
 - Stochastic design techniques and methodologies
 - Process aware synthesis and physical design tools
- Homogeneous/Heterogeneous Multi-Core Architectures
 - System-level specification for cores, hardware acceleration and software that encompass performance, thermal, cost, etc.
 - Systematic post-silicon bring-up and debug
 - Memory subsystem test and validation
- Analog and Mixed-Signal Design
 - Synthesis, physical design, test and verification

- Homogeneous/Heterogeneous Multi-Core Architectures
 - Architectures, languages, and tools to support multi-core programming, debug, and optimization
- Analog and Mixed-Signal Design
 - Ultra low-power circuits, better passive elements, emerging apps
- Functional Diversification Applications
 - Novel architectures and circuits for emerging embedded applications
 - Multi-metric system-level exploration for diverse domains
- Coping with Variability/Reliability Issues
 - Architecture and circuits for robust systems (analog and digital)
 - Systematic post-silicon bring-up and debug
 - Variability-aware adaptive architectures
- Design Solutions for Thermal/Power
 - Active feedback between thermal solutions and processor
 - System-level power and thermal estimation and reduction
- Memories
 - Circuits, cells, and architecture for emerging memory approaches

- Centered, low variability fabrication technologies
 - Demonstrate that the percent of manufacturing variability need not increase with functional density, i.e. with respect to dimension, overlay, placement, composition, architecture, etc.;

New cost curves for nanoelectronics fabrication

- Develop novel materials, process, and equipment options that:
- Enable extensible nanoelectronics fabrication, defect detection, and yield management into the sub-10 nm domain and
- Leverage the existing fabrication infrastructure;

Functional diversification

- Design, identify, and enable the integration of customized materials with electronically useful functionality for high value application opportunities;
- Sustainable, high performance fabrication
 - Extend sustainable, benign, high performance nanomanufacturing technologies into the sub-10 nm domain.

- Track and push ITRS-driven CMOS scaling towards limits
 - Advanced Si structures, gate stack, source/drain resistance...
- Ensure success of III-V program in NCRC
 - Explore collaboration with SEMATECH
- Develop novel nonvolatile memory of non-charge-storage type of cells
 - In particular, resistive RAM and ferroelectric RAM
- Manage ramping up AMS program
 - As part of functional diversification
- Modeling and simulation
 - New device physics from nano-scale structures
- Compact modeling for advanced devices and analog devices
- Improve device variability and reliability

- Continue scaling research in devices and technology
 - New materials and processes for interconnects and packaging
 - Novel interconnect structures
 - Interconnect and packaging TCAD
 - Metrology/modeling for nanoscale materials and structures
- Functional Diversification Applications
 - Nano-engineered materials and processes that enable functional diversification
 - Packaging for functional diversification
 - Integration of sensors, energy harvesters and storage
- Homogeneous/Heterogeneous Multicore Architectures
 - Increased I/O bandwidth
- Coping with Variability/Reliability Issues
 - Reliable interconnects at 16 nm and 3D
 - Manufacturing options for reducing variability and enhancing reliability
- Design and Technology Solutions for Thermal/Power
 - Novel approaches for heat removal

CADTS Strategic Themes

Consensus/Divergence

William Joyner June 29, 2009

- Areas of consensus
 - Power
 - DFM, variability
 - Faster tools through parallelism/multicore
 - Importance of test, verification
- Areas of divergence
 - System-level design tools
 - Tools for software
 - Balance: LPD, test, verification, systems; digital/analog

Power

- Power grid improvement
- Power reduction/optimization
- DFM, variability
 - Process-aware design tools
 - Synthesis with variation awareness
- Faster tools through parallelism/multicore
 - Using parallelism to speed up CAD and test algorithms
 - CAD, test for multicore NSF collaboration
- Importance of verification, test
 - Post-silicon validation
 - Analog, digital test
 - Early life and late life failure analysis and avoidance

System-level design tools

- Definite member need
- Will it detract from circuit-level tools?
- How to coordinate with ICSS
- Tools for software
 - Hardware/software becoming critical to some members
 - How far can we go without "mission creep"?
- Balance: LPD, test, verification, systems; digital/analog
 - Maintaining critical mass
 - Differentiating LPD, systems
 - Digital/analog balance and analog design vs digital emulation

ICSS Strategic Themes

Consensus/Divergence

David Yeh June 29, 2009

Areas of consensus

- Need for both digital and analog
- Importance of multi-core
- Importance of system-level design

Areas of divergence

- Software
- Parallel execution: GPU vs. CPU, homogeneous vs. heterogeneous, programming models
- Application spaces

- Need for both digital and analog
 - Especially for design of systems
- Importance of multi-core
 - Likely to be large part of Systems thrust
- Importance of system-level design
 - New applications bring higher focus on system design
 - Need to work out system tools with CADTS

Software

- Characteristics of application software
- Impact on design, reliability, performance
- Parallel execution
 - CPU vs. GPU
 - Homogeneous vs. heterogeneous
 - Programming models
- Application spaces
 - Products
 - Power constraints
 - Both for digital and analog

NMS Strategic Themes

Consensus/Divergence

Daniel J.C. Herr June 29, 2009

Areas of consensus

- Directed self-assembly
- ESH material stewardship, process improvement, and impact of nanomaterials
- Centered and reduced variability processes
- 3D characterization, defect detection, and correlation to macroscopic properties at the atomic and nano-scales

Areas of divergence

- Functional diversification
- ITRS emerging research materials/processes
- NGL extensibility/limits

- Directed self-assembly
 - Focus on ERM research requirements that target 2012-13 results and a potential 2016 insertion option for smart resists, with enhanced resolution and dimensional control.
- ESH material stewardship, process improvement, and impact of nanomaterials
 - Enhance material management/stewardship;
 - Reduced material usage, waste, and material cost;
 - Reduce fabrication energy footprint and related costs.
 - Reduce the impact/risk of inserting new materials.
- Centered and reduced variability processes
 - Enable extensible fabrication of ITRS system options.
- 3D characterization, defect detection, and correlation to macroscopic properties at the atomic and nano-scales
 - Requires integrated metrology and modeling;
 - Non-destructive characterization of buried interfaces/structures.

- Functional diversification
 - Some companies value a vehicle for exploring application-specific materials.
 - Identify targeted areas of common interest and avoid dilution, while resource constrained.
- ITRS emerging research materials/processes
 - Some ITRS identified ERM application opportunities are aligned with GRC's strategic horizon.
 - Identify targeted areas of common interest and avoid dilution, while resource constrained.
- NGL extensibility/limits
 - A few companies value targeted research in EUVL and imprint lithography.
 - Most companies perceive that additional GRC research in this area will have diminishing impact on the technology, which is transitioning to the development phase.

DS Strategic Themes

Consensus/Divergence

Kwok Ng June 29, 2009

DS Strategy: Consensus and Divergence

- Areas of Consensus
 - Nonvolatile memory
 - Modeling and simulation
- Areas of Strategic Divergence
 - Digital technology vs. analog/mixed-signal technology
 - Scaling CMOS device: Classical (Si) vs. non-classical (III-V)

- Nonvolatile memory
 - Within Memory thrust, nonvolatile memory is of highest interest.
 - Most tasks are non-charge-storage type; resistive RAM and Ferroelectric RAM.
- Modeling and simulation (TCAD and compact modeling)
 - Agreed to have balance between modeling and technology.
 - In compact modeling, might be divergence of priority on digital devices vs. analog devices.

- Digital technology vs. analog & mixed-signal technology
 - Similar to (or part of) scaling vs. functional diversification.
- Scaling digital CMOS device: Classical (Si) vs. non-classical (III-V)
 - Issue compounded by the Center (NCRC) which was started before ETAB could allocate funding on thrusts directly. (Funding level already reduced from \$1.3M/yr to <\$1M/yr.)
 - Also compounded by the fact that total funding on digital has dropped due to the ramp up of analog & mixed-signal.

IPS Strategic Themes

Consensus/Divergence

Scott List June 29, 2009

Areas of consensus

- Functional diversification expansion into 3D
- Increased reliability focus
- Exploring interconnects/package and design interactions
- Areas of strategic divergence
 - Functional diversification expansions into bio-compatibility and memory
 - Emphasis of BEP versus PKG research
 - Timing of transfer of IFC portfolio into IPS

- Functional diversification expansion into 3D
 - 3D process, modeling and system optimization focus
 - New IPC center formation
 - Joint BEP and PKG funding
- Increased reliability focus
 - Mechanical and electrical reliability challenges increasing
 - Improved metrology, fundamental understanding and process solutions are required
- Exploring interconnect / package and design interactions
 - Broader, system level optimization required
 - Multi-core initiative a good start, but need sharper focus
 - Potential joint funding for 3D design, or design for interconnect

- Functional diversification expansions into bio-compatibility and memory
 - Only 3D had large majority support for FD expansion
 - Other FD areas such as bio-compatibility and interconnect centric memory do not currently have consensus support
 - RCP or new proposal selection process may fund these areas
- Emphasis of BEP versus PKG research
 - Members increasingly polarized: suppliers-BEP, fabless-PKG
 - Generates bimodal scores and proposal selection disharmony
 - New proposal selection process may help diffuse tension
- Timing of transfer of IFC portfolio into IPS
 - Portfolio rationalization minimizes overlap and transfer
 - Depends on the future charter of the Connectivity Center