

Application and Network Optimized Next Generation System Research

Shahrokh Daijavad IBM T.J. Watson Research Center

06/29/2009

© 2009 IBM Corporation

System Evolution

Trends:

- Highly parallel homogeneous / heterogeneous systems built with multiple small processors
 - Weaker single-thread performance, good chip-level throughput performance, and excellent power-performance
- Increasing cores / die, threads / core, transistors / chip, and virtualization containers will saturate onchip cache capacity and off-chip bandwidth
- Increased computational density drives the need for greater I/O bandwidth and more efficient I/O processing
- □ Application optimized systems and system-level accelerators grow in importance
- □ Parallelism is exploited at all levels of the software stack

Emerging

Information lifecycle mgt

Web Services (XML)

Rich media applications

Event-driven applications

IP convergence (IM, VoIP, SIP)

Enterprise search & analytics

Event Driven Business Operation

Collaborative with Antivirus & Anti-spam

IT infrastructure with encryption

Web Infrastructure with encryption

Next Gen HPC Applications

Future

New and evolving workloads for emerging application-optimized systems

Evolutionary

Event Driven Business Operation

Collaborative with Antivirus & Anti-spam

IT infrastructure with encryption

Web Infrastructure with encryption

Next Gen HPC Applications

Existing Workloads

Business Processing

Decision Support

Collaborative

IT Infrastructure

Web Infrastructure

HPC Applications

Today

Time

Workload Attributes

Time

Integrated Acceleration

Time

Application Optimization Approaches

□ Loosely coupled: Traditional Heterogeneous Systems Approach

- > Each step in a computational work stream is a separate application which runs on a subset of the systems
- □ <u>Tightly coupled</u>: Processor with Attached Coprocessor Approach
 - > Master application on the base system spawns work threads to the accelerator system as needed

Compelling differentiation and accelerated system improvement can only be achieved through a multilevel Hybrid System architecture that integrates complementary scalable subsystems optimized throughout the stack. These subsystems will evolve into a few main forms of scalable parallel architectures, with significant reuse of common technology components across all of them.

Different Flavors of Acceleration for Hybrid Systems

In a Smarter Planet, vast amounts of data will be created and disseminated at networking speeds. Systems will need to process data in near real-time for information efficiency, and scale with the growth in the number of data sources and information types at networking data rates.

Example: Network-speed arrival of financial information from disparate sources (news feeds, tickers, subscriptions, exchanges, clearing houses) pre-processed for risk analytics and automated trading. This will allow **real-time response** to complex market and credit conditions and greater visibility into real economic conditions

Opportunities:

- Financial, Security, Streaming
- Health and Diagnostics, Data Analysis
- Transformations and Correlations

- Climate, Population
- Global-threat containment, Power grid

•

IO Performance vs. CPU Performance

Notes:

- 1. Assumes 40G Ethernet in 2010
- 2. Multi-core performance of TCP/IP, or multiple cores doing IO on one CPU die is not fully considered.

- □ Since mid 1990's IO speed grows faster then CPU performance: delta ~ 0.5 1 Order of M.
- □ Multi-core processor chips *seem* to allow catch up, though:
 - > Only if off-chip bus speed scales linear with number of cores
 - Only if IO tasks can be well balanced over all cores
- □ In addition, scale-out will put more demands on I/O more synchronization / messaging between cores, not necessarily limited to one multi-core processor chip

A Throughput-Optimized MMT System

TEM

Network Processing + General Purpose Computing + Targeted Accelerators

Computation requirement per wireless spectrum carrier

Multicore

> Applications must contain inherent parallelism (Amdahl's law)

- Options
 - explicitly expressed in programming model
 - implicitly implemented in middleware (JEE)
 - automatically detected by compiler (long history of limited success)
- w/ appropriate tooling (development, performance)
- > SW stack (middleware, OS, etc.) must preserve and map parallelism to HW

> Has been a very challenging problem for several decades

15

- > Different communication, coordination, programming model assumptions
- > Applications must have components that can be accelerated
 - Must be explicitly expressed in programming model or
 - Common function that maps directly to semantics of an accelerator
- SW stack must preserve and map effectively to HW
- \succ All the problems of multicore, plus ...

Opportunities to exploit parallelism at all levels of the software stack	
Application Frameworks	SAP, PeopleSoft, Siebel, MS Office, Google Apps
Application Programming Models	Enterprise SOA, Network Mashups
Scripting Languages	PHP, RubyOnRails, JavaScript, Perl, Python, VisualBasic
Middleware	Websphere, DB2, MySQL, Apache, BEA, Oracle, .NET
Programming Tools	Eclipse, Visual Studio
System / MW Prog. Languages	Java, C#
Dynamic compilers, VMs, Lang Runtime	JRE, CLR (Common Language Runtime)
Static Compilers	Open Source, Vendor Proprietary
System Libraries	Linux / AIX, Windows
OS and Hypervisors	Linux / AIX, Windows, VMware, Xen, PHYP

Systems built around multi-core processor chips are driving the development of new techniques for automatic exploitation by applications

Open Source Software for dealing with Multicores

Sourceforge: <u>http://sourceforge.net/projects/amino-cbbs/</u>

- **Exploitation of accelerators at various layers of the software stack**
- **The "lower" the layer of the software stack, the more "desirable" from the point of view of Independent Software Vendors (ISVs)**

PKCS-11: Public Key Cryptography Standard #11 is the Cryptographic Token Interface Standard

- □ 3D technology allows for the equivalent of 2x to 4x density improvements beyond normal semiconductor density scaling
- □ The modular layer approach to 3D allows for a multitude of application scenarios

Processor Technology Trends

The industry is adopting multi-core chips and energy efficient cores for aggressive chip and system-level performance growth.