AGENDA : 2009 GRC ETAB Summer Study Session III: Design Challenges for 3D Packaging Integration

- 8:00 Introduction John Darringer, IBM
- 8:15 An IFM Perspective of a 3D Design Eco-System
 - Riko Radocic, Qualcomm
- 8:45 Co-Design of Future Architectures with 3D Technologies
 - Mike Rosenfield, IBM
- 9:15 Future Challenges From A Thermo-Mechanical Perspective For 3D Chip Stacks
 - Gamal Refai-Ahmed, AMD, Bahgat Sammakia, SUNY Binghamton
- 9:45 Break
- 10:00 Taller vs. Smaller: 3D Development and Moore's Law
 - Frank Schellemberg, Mentor
- 10:30 Coping with the Vertical Interconnect Bottleneck
 - Jason Cong, UCLA
- 11:30 Architecture and Application Perspectives for 3D Integration
 - Yuan Xie, Penn State
- 12:00 Panel ? What are the top areas for 3D research? ? Moderator John Darringer

2753 Matter 2

QUALCOMM PROPRIETARY

12:30 Lunch

QUALCOMM CDMA TECHNOLOGIES

3D Design Eco-System Now – Soon – Future : an IFM Perspective

prepared for : 2009 GRC ETAB Summer Study Session III: Design Challenges for 3D Packaging Integration

RikoR

Tuesday, June 30

Background Landscape Integrated Fabless Manufacturer

QUALCOMM PROPRIETARY

Qualcomm TSS Roadmap

	<u>TSV</u>	<u># TIERS</u>	<u># VIAS</u>	<u>TSV Diameter</u> <u>Si Thickness</u>
STAGE1	Cu via after FEOL	2	1000's	6um/ 50um
STAGE2	Cu via after FEOL	2-3	10,000s	2-3um/ 25um
STAGE3	Cu via after FEOL	3 or more	>	<2-3um/ <25um

- Projections based on current realities and outlook
- It is still early days in the technology and sourcing life cycle

<u>Develop Design Infrastructure for Stage 1</u> <u>but with Focus on Road Map</u>

TSVs => smaller / Si => thinner / options & challenges => proliferating

2753 Matters 2

QUALCOMM PROPRIETARY

What We Are Trying to Build : <u>Through-Si-Via Stack</u> (TSS)

Product Design Eco System...

- Generic View of the Chip Design Eco-System
 - a structured flow with many procedures and steps
- Manufacturing Process Information flows UP the flow - in form of constraints
 - Rules, tech files, models....
- Product Design Information flows DOWN the flow - *in form of* specifications
 - RTL, NL, GDS ..

CDMA Technologies

- Historically the Hand-Offs and Interfaces were Reasonably Well Defined
 - Open and 'de-facto' Standards
 - Between 'ecosystems' and Across the Levels of Hierarchy

Design Eco-System Challenge : Costs

• Chip Design Expensive = 10's of M\$

Part of the Cause : Iterative Re-Dos and Re-Spins

- Instability in System Specifications
- Instability in Process Technology

- This is an Especially Acute Concern with 3D Technologies
 - Allows new and untried degrees of freedom in architecture
 - Allows new and untried sensitivities in the manufacturing process

Eco-System for 3D Design

- Segment Design Eco-System into 3 Groups
- "Design Authoring" actual chip design
 - (Expensive) Actual Chip Design Output GDS
- "PathFinding" system space exploration
 - (Cheap) Quick & Dirty System Design Output Clean Specs
- "TechTuning" physical space exploration
 - (Cheap) Multiphysical Chip Simulation Output Clean Constraints

QUALCOMM CDMA TECHNOLOGIES

PathFinding a Design Co-Optimization Methodology for TSS System Level – to – Chip Level

Challenge : Disruptive Technology Adoption How to connect a Technology Concept with real, in-product, implementation App. Exploration

Infrastructure for PathFinding

- Past: Exploratory Analyses
 - Use 'guru' model & Excel
 - Evolutionary Process
 - Trials in Design Authoring flow

✓ OK in domain of predictable 'happy scaling'

- Future: PathFinding
 - Cannot rely just on experience
 - Relative Fidelity vs Accuracy
 - Cannot use Design Authoring flow

 Required for 'fast failing' with many options

QUALCOANS* CDMA Technologies

- <u>Output</u>: ESTIMATE of cost, power, performance...
- <u>Requirements</u>: Maintain FIDELITY, use predictive models, sensitivity estimates & behavioral descriptions

Require Specialized Design Space Exploration Flow 9 PathFinding 9 vs. Design Authoring 9 vs. Functionality & Performance only Accuracy

Flexibility

- <u>Output</u>: Working and Yielding Si parts & Systems
- <u>Requirements</u> : exact and based on full Design Enablement infrastructure

QUALCOMM PROPRIETARY

What is this "PathFinding" anyways...

Ideal : Black Box Design System that Seamlessly Optimizes Process & Design

- Leverage Existing Design Flow Paradigm
- Optimization = Looping Through the Flow
 - otherwise it is not 'optimization'
- Current Practices
 - Do Nothing
 - Informal, ad-hoc, guru wing it... or
 - Complete Trial Design

PATHFINDING IS a Design Flow that allows :

- Fast & Iterative Looping
 - Adjustable trade-off of speed vs. accuracy

Structured & Holistic Analyses

- A systematic 'practice' for optimization
- Predictive Analyses
 - It has to be based on predictive models

PathFinding : from System to GDSII in 'no time'

PathFinding Next Steps ?

Next Phase Development Opportunity

- Past : Spatially Un-Aware Design Space Exploration
- Phase 1 : Physical PathFinding
- Phase 2 : Architectural PathFinding

Phase 3 : Integrated Product PathFinding ?

Phase 3 : Product PathFinding

Different MCM/SiP solutions

Package Level Exploration

Phase 3 : Integrated Product PathFinding

- From Architecture through Physical Si Design through to Packaging
- Output Specs (Design, Process & Package) rather than Working Si
- Output 'virtual prototype'

QUALCOMM CDMA TECHNOLOGIES

TechTuning Technology Co-Optimization Methodology for TSS Chip Level – to – Process Technology

New 3D TSS Stack Design Considerations

- Traditional Thermal & Mechanical Domains of Concerns
 - Thermal & Mechanical analyses typically ignored at chip design level
 - Mostly a Package or System level concern
 - At chip level managed through <u>max die size</u> & <u>max</u> <u>power</u> rules

QUALCOMM PROPRIETARY

• 3D Technology is a Chip Level System Integration Technology

- 3D Technology = Direct & Intimate Interaction Across Several Die
 - With TSS where does the Si chip end and the package begin ?
- Cannot Ignore Thermal and Mechanical Interactions during Stack Design

253. 182 2

- Cannot manage thermal & mechanical issues at package level only
- Cannot treat a die as a monolithic slab of Si only
- − Cannot manage empirically ⇔ Need Ability to Simulate

Thermal Concerns & Requirements

Example Concerns :

Hot Spot (T> X ⁰C) on any Tier due to Stack Power Dissipation vs. physical and layout factors

- thickness, uBump distribution, underfill & potting properties, etc...

vs. chip design factors

- floorplans, routing, power management schemes, PNG, etc...

vs. use and application factors

- power distribution and densities on each tier vs P and V corners, etc..

Thermal Effect on Device Performance & Variability

Use conditions, layout configurations, package specs...

Stack Design Requirements

- Design rules for bump and TSV placement and density
- Thermal application rules and guidelines inc Chip Design

OUALCOMM PROPRIETARY

Thermal hot spot analysis and TSS stack sign off

Infrastructure Needs

- Model Format + Metrology System & Test Structures
- DATA: thermal material properties + Validation Data

Mechanical Concerns & Requirements

Example Concerns :

Effect of Warpage on Stack Manufacturability

•vs temperatures, die sizes, process flow, underfill properties, thickness...

Die size constraints for tier1/tier2 combinations

relative alignments, temperatures, process flow, underfill properties, thickness

253 Mater 2

OUALCOMM PROPRIETARY

Strain Effect on device Performance and Variability

strain booster relaxation vs thinning, TSV & uBump proximity ...

Product Requirements

- Design rules
- Mechanical application rules and guidelines inc Chip Design
- Mechanical hot spot analysis and TSS stack sign off

Infrastructure Needs

- Model Format + Metrology System & Test Structures
- DATA : mechanical material properties + Validation data

TechTuning Requirements

Simulators

- Baseline Software tool(s) and Methodologies
- Suitable EDA Partners
-

Models

- FEA vs more abstract behavioral model ?
- Absolute values vs values relative to some reference point ?
- Modeling of individual layers vs. smear a stack of layers ?
- Compact Modeling methodologies

• ...

Data

- FEOL, RDL, uBump, FC Bump, Underfil, Substrate, Package ...
- Material, Young's Modulus, Poisson's ratio, TCE, Stress Free T..
- Thermal Conductivity
- Geometric Properties....
-

Standards

- Model Formats (not coefficients)
- Interface Format for Handoff Between Tools...
- Metrology Systems & Definitions
-

Use Flow

- Use Flow
- Calibration QA Methodology
- Validation QA Methodology
- Use Environment QA Methodology

THIS IS A LOT OF WORK + NEW STUFF !?!?

BUT necessary if TSS technology is to go mainstream

SO LET US BEGIN

QUALCOMM PROPRIETARY

-If not us - then who ? -If not now- then when ?

353 741 2

Modeling and Simulation Granularity

- Simulation (&modeling) Occurs at Different Design Abstraction Levels
- Dependent on Granularity of Process and Design Input
 - Granularity of Material parameters
 - Granularity of Layout parameters
- Only Some Combinations Make Sense
 - e.g. if process input is monolithic Si slab there is no point of any design input beyond die footprint (as used for package level sim)
 - e.g. if the design input is a LEF/DEF there is no point of detailed material properties
- TechTuning Goal is to Get Thermal & Mechanical Simulations Analyses for :
 - DEF Level floorplanning & package design
 - GDS level verification
- Ergo require "Smear" models and/or "Compact" model
 - Should be easier to manage at both, the source and the use end
 - Encrypted Models would work as well

QUALCONN* CDMA Technologies

Model Hierarchy & Granularity of InPut

- In Design and Process Domain -

QUALCOMM PROPRIETARY

TechTuning Hierarchy

- Challenge : Multi-Scale & Multi-Physics
 - No single integrated solution (today)
 - Use sub-modeling approach w/ Hierarchical Model & Infrastructure
 - Leverage existing infrastructure as much as possible

TechTuning RoadMap ?

This is a loooong term project

But a necessary one to enable proliferation of 3D technologies

TechTuning Next Steps ?

Next Phase Development Opportunity

- Past : Gross Global Constraints
- Phase 1 : Thermal & Mechanical Rules based on Analyses Tools
- Phase 2 : In Situ Design-for-Stacking flow

Phase 3 : Commoditization?

Phase 3 : Thermal & Mechanical Infrastructure Commoditization

- Open Standard Model Formats
- General Practices for Calibration Practices (Test Structures, Measurements..)
- General Practices for Validation to Si and Compact Model to TechTuning model

1253 Peres 2

16th

and their

Phase 3 : Commoditization

Standard Model Formats

QUALCOMM CDMA TECHNOLOGIES

Design Authoring a Physical Design Flow for TSS Stack Design Spec – to – GDS

2.5D Design Authoring : Stage -1 Requirements

2.5D EDA Tool Requirement for Stage-1 Product

If No RDL Routing = Simplified EDA requirements for PD

No need for 2.5D double side aware floor planner or router

Fixed µBump -TSV alignment = Simplified EDA requirements for Extraction

No need to extract TSVs – use drop in component model

Function	2.5D EDA Requirement	Comment	
Synthesis	NO	 Assume Synthesis is all in 2D, with clean Specs for partitioning and Tier to Tier communication defined in PathFinding 	
Floorplan	MAYBE	 If Assume that complex TSS floor planning restrictions dictated by Tier-2 are Defined in PathFinding this can be done manually off line i.e Need for TSV and Backside awareness is case dependent 	
Layout	NO	Layout is all in 2D. No need for any Up Dates	
STA	NO	 Assume that the voltage dependence of TSV capacitance can be handled as a corner case 	
PDN	NO	 Assuming basically different power networks that have been well spec'ed out in PathFinding 	
P&R	MAYBE	 If Assume 2D routing between fixed I/O's If Need Backside routing between TSVs and-uBumps 	
Extraction	MAYBE	 My not be required if use of a fixed Composite Model is allowed by prohibitions in variability in layout 	
Verification	MAYBE	 Physical verification across both tiers – based on a scripted approach 	
CDMA Technologies			

Design Authoring Next Steps ?

Next Phase Development Opportunity

- Current : "2D" Design = multiple layers on single one-sided die
 - Phase 1 : "2.5D" Design = multiple layers on single two-sided die
- Phase 2 : "3D" Design = multiple layers on multiple two-sided die

Phase 3 : Integrated 3D Design Eco-System

Phase 3 : 3D Integrated Eco System

- Structured & seamless integration of PathFinding / TechTuning 'side lobes'
- Integrated Package Stack Si Co-Design Practices
- Standardized Tool Interfaces for easy integration

How Should it all Play Together

Wild & Wacky Opportunities ?

Regenerative Cooling

- o a la Regenerative Braking when energy becomes expensive
- Does having multiple die, and the stuff between them enable some form of conversion of heat back into electricity somehow more possible ?

Charge Re-Cycling

- o a la Water Recycling when a commodity resource becomes expensive
- Does having multiple die, and the stuff between them enable some form of recycling of charge somehow more possible or practical ?

Distributed Utilities

- o a la Urban Planning when centralization causes traffic congestion
- Seems like managing clocks / PDN / DFT across multiple tiers and technologies becomes a huge headache and there is an opportunity for some structured methodology to redistribute

