

Coping with Vertical Interconnect Bottleneck

Jason Cong UCLA Computer Science Department

<u>cong@cs.ucla.edu</u>

http://cadlab.cs.ucla.edu/~cong

Outline

Lessons learned

Research challenges and opportunities

Recent Work on 3D Physical Design Flow (IBM, UCLA, and PSU) (2006 – 2008)

3D Architecture Evaluation with Physical Planning -- MEVA-3D [DAC'03 & ASPDAC'06]

Optimize

- BIPS (not IPC or Freq)
 - Consider interconnect pipelining based on early floorplanning for critical paths
 - Use IPC sensitivity model [Jagannathan05]
- Area/wirelength
- Temperature

Design Driver 1 (Using Top-Level Floorplan)

 An out-of-order superscalar processor micro-architecture with 4 banks of L2 cache in 70*nm* technology

Critical paths

Wakeup Latency	Latency to wakeup the dependent instruction
ALU Bypass	latency of the bypass wires between the ALUs
DL1 Latency	Load latency though the L1 data cache
L2 Latency	Latency for access to L2 cache
MPLAT	latency through the branch resolution path

Top-Level Wirelength Improvement from 3D Stacking

Close to 2X WL reduction (for top-level interconnects)

Assume two device layers

Performance Improvement from 3D Stacking

Disappointing

2D vs 3D Layout

Assume two device layers

Design Driver 2 (Using Full RTL)

An open-source 32-bit processor

- Compliant with SPARC V8 architecture
- Synthesized by Cadence RTL compiler with UMC 90nm digital cell library and Faraday memory compiler
 - Configuration: Single core with 4KB data cache and 4KB instruction cache as direct-mapped caches
 - statistics:
 - #cell = 34225
 - #macro = 12
 - #net = 36789
 - Total area = 6.67 $x_U c Q_A^5 \psi g g c_{AD}^2 LAB$

Logical Hierarchy of LEON3

- LEON3 (77.8% area)
 - Processor core (11.1% area)
 - Integer unit (6.6% area)
 - Multiplier (1.6% area)
 - Divider (0.7% area)
 - Memory management unit (2.2% area)
 - Register file (16.6% area)
 - Cache memory (38.1% area)
 - TLB memory (12.0% area)
- Debug support unit (13.4% area)
- Other (8.8% area)
 - Memory controller (1.8% area)
 - Interrupt controller (0.3% area)
 - UART serial interface (0.7% area)
 - AMBA AHB bus, AMBA APB bus (4.3% area)
 - General purpose timer unit (1.4% area)
 - General purpose I/O unit (0.3% area)

3D Placement Restricted By Logical Hierarchies

Comparisons

	Flat	Processor Core restricted	Register file restricted	
HWPL	0.99 (m)	1.09 (m)	1.20 (m)	
#TSV	3835	1715	845	
Flat 3D placement				

Processor core restricted

- Processor core is restricted in only one device layer
 - Including Integer unit, multiplier, divider and MMU

Register file restricted

• Register file is restricted in only one device layer

Outline

Lessons learned

- Block stacking gives limited performance and WL reduction
- Full potential is realized with extensive vertical connections

Research challenges and opportunities

- Novel 3D architecture component designs that can cope with the vertical interconnect bottleneck,
- Physical synthesis tools that can fully comply with global and local TSV density constraints,
- 3D microarchitecture exploration, include generating optimized
 3D physical hierarchies under the TSV density constraints
- New interconnect technologies that can alleviate or eliminate the vertical interconnect bottleneck.

Results from 3D Folding and Stacking

Over 35% performance improvement

5GHz 3 Device Layer Layout

3D Architectural Blocks – Issue Queue

Block folding

- Fold the entries and place them on different layers
- Effectively shortens the tag lines

Port partitioning

- Place tag lines and ports on multiple layer, thus reducing both the height and width of the ISQ.
- The reduction in tag and matchline wires can help reduce both power and delay.

Benefits from block folding

 Maximum delay reduction of 50%, maximum area reduction of 90% and a maximum reduction in power consumption of 40%

(a) 2D issue queue with 4 taglines;(b) block folding;(c) port partitioning

3D Architectural Blocks – Caches

♦ 3D-CACTI: a tool to model 3D cache for area, delay and power

- We add port partitioning method
- The area impaction of vias

Improvements

- Port folding performs better than wordline folding for area.(72% vs 51%)
- Wordline folding is more effective in reducing the block delay (13% vs 5%)
- Port folding also performs better in reducing power (13% vs 5%)
- Requires dense TSVs

Single Layer Design

Wordline Folding

Port Partitioning

Outline

Lessons learned

- Block stacking gives limited performance and WL reduction
- Full potential is realized with extensive vertical connections

Research challenges and opportunities

- Novel 3D architecture component designs that can cope with the vertical interconnect bottleneck
- Physical synthesis tools that can fully comply with global and local TSV density constraints
- 3D microarchitecture exploration, include generating optimized
 3D physical hierarchies under the TSV density constraints
- New interconnect technologies that can alleviate or eliminate the vertical interconnect bottleneck

Current Approaches to Handling TSV Constraints

Approach 1: minimizing

WL + k* #TSVs

- Approach 2: minimizing WL (or weighted WL) subject to the total #TSV constraints
- None of these can handle local TSV density constraints

Outline

Lessons learned

- Block stacking gives limited performance and WL reduction
- Full potential is realized with extensive vertical connections

Research challenges and opportunities

- Novel 3D architecture component designs that can cope with the vertical interconnect bottleneck
- Physical synthesis tools that can fully comply with global and local TSV density constraints
- <u>3D microarchitecture exploration, include generating optimized</u>
 <u>3D physical hierarchies under the TSV density constraints</u>
- New interconnect technologies that can alleviate or eliminate the vertical interconnect bottleneck

Example: Impact of Following Logical Hierarchy ◆ Comparisons

	Flat	Processor Core restricted	Register file restricted
HWPL	0.99 (m)	1.09 (m)	1.20 (m)
#TSV	3835	1715	845

- Flat SD placement
- Processor core restricted
 - Processor core is restricted in only one device layer
 - Including Integer unit, multiplier, divider and MMU
- Register file restricted
 - Register file is restricted in only one device layer

Question: how much logic hierarchy to flatten for 3D design/optimization?

Outline

Lessons learned

- Block stacking gives limited performance and WL reduction
- Full potential is realized with extensive vertical connections

Research challenges and opportunities

- Novel 3D architecture component designs that can cope with the vertical interconnect bottleneck
- Physical synthesis tools that can fully comply with global and local TSV density constraints
- 3D microarchitecture exploration, include generating optimized
 3D physical hierarchies under the TSV density constraints
- <u>New interconnect technologies that can alleviate or eliminate</u> the vertical interconnect bottleneck

Contactless Interconnects

Inductor-coupled Interconnect

Advantages:

More effective for longer distance communication (hundreds of microns)

Disadvantages:

Larger size Higher cross talks between channels

Capacitor-coupled Interconnect

Advantages:

Smaller size Lower cross talk

Disadvantages:

Effective for short distance communication (several microns)

Suitable for 3DIC integration

Die Photos (MIT LL 0.18um)

BISI die photo

RFI die photo

BISI Test Results [ISSCC'07]

Data rate:10Gbps

Output Eye diagram

Output versus Input

Conclusions

Never enough for vertical interconnects (VIs)

Need to cope with VI constraints

- Novel 3D architecture component designs
- Physical synthesis tools that can fully comply with global and local TSV density constraints,
- 3D microarchitecture exploration, include generating optimized
 3D physical hierarchies under the TSV density constraints

Need to find ways to break VI bottleneck

New interconnect technologies

Acknowledgements

 We would like to thank the supports from DARPA

Support from the primary contractors - Collaboration with CFDRC and IBM

Publications are available from

http://cadlab.cs.ucla.edu/~cong

Example 1 Processor Parameters

Instruction Cache	32KB, 32B/block, 2-way
Decode Width	8
ROB Size	128 entries
Issue Queue	32 entries
Issue Width	8
Register File	70 INT and 70 FP
Functional Units	Units 4 IntALU, 1 FPALU, 2 IntMult, 1 FPMult
Load/Store Queue	32 entries
L1Data Cache	16KB, 32B/block, 4-way, 2RW ports
Unified L2 cache	1MB, 64B/block, 8-way

Further Discussions of Example 2

Comparisons

	Flat	Processor Core restricted	Register file restricted
HWPL	0.99 (m)	1.09 (m)	1.20 (m)
#TSV	3835	1715	845

- Example: TSV in MIT Lincoln 180nm SOI 3D technology
 - Resistance: one TSV is equivalent to a 8-20 µm metal 2 wire
 - Capacitance: one TSV is equivalent to a 0.2 µm metal 2 wire

Conclusion

- TSV impact on the RC is not significant
- Some logical units are preferred to be distributed on different device layers
 - E.g., the register file in the LEON3 circuit
- Flat 3D placement is preferred to optimize total RC

3D Capacitive RF-Interconnect

NRZ baseband signal is up-converted by an RF carrier at the transmitter (tier N+1) using ASK (Amplitude-Shift-Key) modulation; and an RF envelope detector at the receiver (tier N) recovers NRZ data in the receiver.