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Q: Current status and metrics of ReRAM technology 

□ CMOS tibilit ( t i l )□, CMOS compatibility (materials, process…)
□, No physical scaling limit (in principle) 

strong competitiveness in price / recording-bit

□ Ultra-fast operation ~ 10 [ns]
□, Large ON / OFF ratio, ~ 103

□, Ultra-fast operation, ~ 10 [ns] 

□, (tolerably) low-power operation, ~ 0.1 [mA] 
□ (tolerably) high endurance ~ 106~9 R/W□, (tolerably) high endurance,  10 R/W
□, (tolerably) good retention, ~ 150 ℃
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New engineered materials play a critical role in the development of future
memories. One of the important goals of materials research for memory
technologies is a clear identification of the physical mechanism of memory

g

technologies is a clear identification of the physical mechanism of memory
operation. Next, an optimized materials system has to be synthesized, including e.g.
precise control of composition, doping, defects etc. For a given memory technology,
i i i l i i ‘b ’ i l F l iit is essential to optimize a ‘base’ materials system. For example, resistance
switching effects have been reported for many families of materials, and it is highly
desirable to identify one or two optimal materials for practical implementations.
Reproducibility of results is serious problem with some emerging research
materials. Also, stability of a material system with respect to endurance of the
memory device is an important issue. Details of sample preparation, electrodey p p p p ,
materials, interfacial properties need to be thoroughly analyzed for addressing the
endurance and reproducibility challenges.
For practical applications, synthesis of materials systems with optimizedFor practical applications, synthesis of materials systems with optimized
operational parameters should be achieved by taking into account the costs, which
may also influence materials selection. For example organic/polymer materials are
potential candidates for future memories as they may offer lower cost integration
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potential candidates for future memories, as they may offer lower‐cost integration
solutions.
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Correction of misapprehension about 
the operation mechanism of binary metal oxide ReRAMthe operation mechanism of binary-metal-oxide ReRAM

Filament model (Fuse-Antifuse operation)

vs (conflicting)

Interface model 
(incl. Schottky Barrier height modulation)( y g )
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Operation mechanism of ReRAM
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Operation mechanism of ReRAM (sub 20nm-node)
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In the nano-meter ReRAM device, the filament model does NOT conflict 
ith th i t f d l Th l t h i l ti t th i t f
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with the interface model.  The electrochemical reaction at the interface 
brings about the non-volatile resistance switching.
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Key issues: To select proper combination of the electrode and the oxide layer
Ellingham diagram (Gibbs Free Energy diagram) gives us the guiding principle

p
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Ellingham diagram (Gibbs Free Energy diagram) gives us the guiding principle.
We can control the active cell size at will in the operation.
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Demonstration of Fast & Low-power operation
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achieved by selecting the combination of Ta and CoO
to fabricate the electrochemically active interface.
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Fig 4 Applied pulse voltage and writing current waveforms of Ta/CoO/Pt for
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2008 I t ti l C f S lid St t D i d M t i l (SSDM 2008)

Fig. 4 Applied pulse voltage and writing current waveforms of Ta/CoO/Pt for 
(a) Set and (b) Reset. Set and reset conditions are 2.2 V 50 ns and -1.4 V 50 ns, 
respectively.
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2008 International Conference on Solid State Devices and Materials (SSDM 2008). 
Date : September 23-26, 2008



Operation mechanism of ReRAMp

S ft b kd C t i d d id tiSoft breakdown
driven by the electric field

Current-induced oxidation

Key points:
The Reset current (Active cell size)( )
will be determined by the Set current.

Key issues  To select proper combination of the electrode and the oxide layerKey issues: To select proper combination of the electrode and the oxide layer
We can control the active cell size at will in the operation.
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potential candidates for future memories, as they may offer lower‐cost integration
solutions.
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What are the key materials challenges (the critical material 
properties ) for ReRAM technologies?

STEP1: 
To s nthesi e the highl reprod cible o ide interfaceTo synthesize the highly-reproducible oxide interface

STEP2:STEP2: 
To decrease the operation current for higher endurance

STEP3: 
To realize zero-current resistance switch 
(Namely ReRAM operated by Voltage)(Namely, ReRAM operated by Voltage) 

These material challenges will open up 
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the new and wider application area of ReRAM! 
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Thank you very much!y y

ご清聴ありがとうございました。ご清聴ありがとうございました。
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