

Nano-Scale Memory Devices: Space-Time-Energy Trade-offs

Ralph Cavin and Victor Zhirnov Semiconductor Research Corporation PIDNEERS

COLLABORATIVE

RESEARCH

IN

Main Points

- Many candidates for beyond-CMOS nano-electronics have been proposed for memory, but no clear successor has been identified.
 - Methodology for system-level analysis
- How is maximum performance related to device physics?

Three integrated components of a Memory Device:

□ 1) 'Storage node'

- physics of memory operation
- 2) 'Sensor' which reads the state
 - e.g. transistor
- 3) 'Selector' which allows a memory cell in an array to be addressed
 - transistor
 - diode

All three components impact scaling limits for all memory devices

Space-Time-Energy Metrics

- Essential parameters of the memory element are:
 - □ cell size/density,
 - □ retention time, access time/speed
 - operating voltage/energy.
- None of known memory technologies, perform well across all of these parameters
- At the most basic level, for an arbitrary memory element, there is interdependence between operational voltage, the speed of operation and the retention time.
- More generally, cell dimensions are also part of the trade-off, hence the Space-Time-Energy compromise

 $E \cdot t \cdot V = \min$

$$E \cdot t \cdot L = \min$$

$$E \cdot t \cdot N_{at} = \min$$

The Least Action principle is a fundamental principle in Physics

$$E \cdot t = \min(\geq h)$$

Plank's constant $h=6.62 \times 10^{-34}$ Js

Three Major Memory State Variables

Electron Charge ('moving electrons')

• e.g. DRAM, Flash

Electron Spin ('moving spins') (STT-) MRAM

Massive particle(s) ('moving atoms')

□ e.g. ReRAM, PCM, Nanomechanical, etc.

Charge-based Memories

DRAM/SRAM Floating Gate Memory SONOS

Requirements:

- 1) Efficient charge injection during programming
- 2) Suppressed back-flow of charge in store/read modes
- 3) Efficient erase
- 4) Min. charge/bit: q=e=1.6x10⁻¹⁹ Q

Barrier-less Ohmic Transport: The most efficient injection, but...

Charge-based memory is a two-barrier system

Essential Physics

The operation of charge-based memory devices is governed by these basic equations, which put fundamental constraints on device and circuit parameters.

What is the minimum barrier height for the charge-based memory?

Volatile electron-based memory: DRAM

DRAM summary

DRAM inherent issues:

Selector -Low barrier height-Volatility

Sensor - Remote sensing – *Large size of Storage node*

Flash: Local Sensing of Memory State

Charge injection problem in highbarrier systems

High-barriers are needed for Non-volatile memory

BUT: Barrier formed by an insulating material (large E_b) cannot be suppressed) – charge transport in the presence of barriers: *Non-ohmic charge transport*

Floating gate memory: WRITE and STORE modes

We need to create an asymmetry in charge transport through the gate dielectric to maximize the $I_{\rm write}/I_{\rm ret}$ ratio

Floating gate cell:

<u>Write</u> – triangle barrier

Retention – trapezoidal barrier

The asymmetry in charge transport between WRITE and STORE modes is achieved through different shape of barrier (triangle vs. trapezoidal)

Retention Analysis: Minimum Barrier Height and Width:

Floating Gate Cell Retention and WRITE characteristics

t Ret

4.35 min

20 v

11

Barrier

Si/SiO2

Si/SiO2

Min. barrier 1.8 eV

Eb

3.1 eV

3.1 eV

V Ret

2 V

2V

0.9 V

а

4 nm

5.4 nm

6.9 nm

Barrier	Eb	VWR	а	t WR
Si/SiO2	3.1 eV	6.8 V	5.4 nm	1h
Si/SiO2	3.1 eV	12 V	5.4 nm	30ms
Min. barrier	1.5 eV	6 V	6.9 nm	40ms

18

Voltage-Time Dilemma

- For an arbitrary electron-charge based memory element, there is interdependence between operational voltage, the speed of operation and the retention time.
- Specifically, the nonvolatile electron-based memory, suffers from the "barrier" issue:
 - High barriers needed for long retention do not allow fast charge injection
 - It is difficult (impossible?) to match their speed and voltages to logic

Semiconductor Physics sets limits on barrier quality

 N_c – effective density of states in the conduction band, for Si N_c =2.8x10¹⁹ cm⁻³ N_V - effective density of states in the valence band, for Si N_V =1.4x10¹⁹ cm⁻³ E_g – the band gap, for Si E_g =1.12 eV

Flash in the limits of scaling

E×t×V~10⁻⁹ J-ns-nm³

Conclusion on ultimate chargebased memories

- All charge-based memories suffer from the "barrier" issue:
 - High barriers needed for long retention do not allow fast charge injection
 - It is difficult (impossible?) to match their speed and voltages to logic
 - Voltage-Time Dilemma

Non-charge-based NVMs?

Emerging Memory Devices

PIONEERS IN

COLLABORATIVE

RESEARCH

The Choice of Information Carrier

Desired: 'Benchmark' memory cell

	Drive	r: Cell Scaling		
Cell size, I	<10 nm			
Store time, t _s	>10 ⁸ s			
Write time, t _w	<10 ⁻⁷ s	Min. sense amplifier requirement (R. Waser et al.)		
Read time, t _r	<10 ⁻⁷ s			
Read Voltage, V _r	~1 V			
Read current, I _r	~10 ⁻⁶ A			
Read current density, J _r	>10 ⁶ A/cm ²			
	<mark>⁺───</mark> Driver: Se	ensing		

Spin torque transfer MRAM

Magnetic storage node (Moving spins): Energy Limit

$$f_{tr} = f_0 \exp\left(-\frac{E_b}{k_B T}\right) = f_0 \exp\left[-\frac{KV}{k_B T}\right]$$

$$(f_0 \sim 10^9 - 10^{10} \text{ c}^{-1})$$

$$t_{store} = \frac{1}{f_0} \exp\left[-\frac{KV}{k_B T}\right]$$

$$t_{store} > 10 \text{ y}$$

$$t_{store} > 10 \text{ y}$$

$$t_{store} > 10 \text{ y}$$

$$t_{b} = KV > 36k_B T \sim 1.25 \text{ eV}$$

$$volume$$

D. Weller and A. Moser, "Thermal Effect Limits in Ultrahigh-Density Magnetic Recording", IEEE Trans. Magn. 36 (1999) 4423

Magnetic storage node (Moving spins): Size Limit

 $E_{b} = KV > 36k_{B}T \sim 1.25 \text{ eV}$ the anisotropy constant of a material $K \sim 0.1 - 1 \text{ J/cm}^{3}$ $volume \quad V = L^{2}T \sim 2\times 10^{-19} \text{ cm}^{3}$ $Thin film: \quad T = 2nm \quad L \sim 11nm$ $N_{at} \sim 10^{4}$ $N_{spin} \sim 10^{5}$

FET selector is biggest part of STT-MRAM in the limits of scaling

J-G. Zhu, Proc. IEEE 96 (2008) 1786

STT-RAM summary

V=1500 nm³ t_w~1 ns

$E{\sim}10^7\,A/cm^2\times11nm^2\times1V\times1$ ns~10^-14 J

E×t×V~10⁻¹¹ J-ns-nm³

Scaled ReRAM

Moving atoms: 'Atomic Relay'

Atomic-scale switch, which opens or closes an electrical circuit by the controlled reconfiguration of silver atoms within an atomic-scale junction.

Such 'atomic relays' operate at room temperature and the only movable part of the switch are the contacting atoms, which open and close a nm-scale gap.

```
◆Small (~1 nm)
```

```
Fast (~1 ns) - projection
```

Low voltage (<1V)</p>

Nature **433**, 47-50 (6 January 2005) **Quantized conductance atomic switch** K. Terabe, T. Hasegawa, T. Nakayama and M. Aono

a=100 nm

Both electrodes influence the potential of the electron within the electrode separation. For small gaps, the near electrode electric fields will influence the energy barrier

Interface-to-interface interaction

a=100 nm

a=50 nm

a=20 nm

a=10 nm

a=5 nm

a=2 nm

a=2 nm

V=0

a=1 nm

V=0

a=0.5 nm

V=0

a=0.5 nm

V=1 volt

V=2 volt

a=2 nm

Ultimate ReRAM: 1-atom gap

Ultimate ReRAM: 1-atom gap

Ultimate ReRAM: 2-atom gap

Ultimate Atomic Relay: 4-atom gap

Ultimate ReRAM: A summary

$$a = 1nm$$

V=1nm³

N_{at}~100 (64)

E~N_{at}*1eV~10⁻¹⁷J

t~1 ns

E×t×V~10⁻¹⁷ J-ns-nm³

Summory									
Sum	nary			Main constraints			nts		
			due to						
					Sp	Space-		4	
	NI	V		t ns	<i>Action</i> , J-ns-nm³		component		
	Ncarriers	v, nm ^s	E _w , J	ч _w , пз					
DRAM	10 ⁵	10 ⁵	10-14	1 ns	(-	·10 ⁻⁹	Storage Nod		lode
Flash	10	10 ³	10 ⁻¹⁵	10 ³ ns		10-9	Sens	or	FET
STT-RAM	10 ⁵	10 ³	10 -14	1 ns	-	10-11	Selec	tor	FET
ReRAM	100	1	10 -17	1 ns	~	10 ⁻¹⁷	Selector F		FET
				Constraints by sensor			-		
				not considered					

Back-Up slides

FET or Diode selector is biggest part of ReRAM in the limits of scaling

Scaling Limits of Diodes

$$N_{d} \leq N_{C}$$
 $W \approx \sqrt{\frac{2\varepsilon\varepsilon_{0}V_{bi}}{N_{D}}} \sim 10 \, nm$

 $N_d \ge N_C$

pn-diode \rightarrow Esaki tunnel diode Schottky diode \rightarrow Ohmic contact

 N_C – effective density of states in the conduction band, for Si N_C =2.8x10¹⁹ cm⁻³

Space-Action: Flash

