

# Capacitorless Double Gate Quantum Well Single Transistor DRAM: 1T-QW DRAM

M. Günhan Ertosun, Krishna C. Saraswat

October 2009, Singapore



Department of Electrical Engineering

| è |  |
|---|--|

# **1T-DRAM: Operation Principles**

The cell senses whether holes accumulate in the floating body as the threshold voltage ( $V_{th}$ ) changes.

The source is set to 0 volt, the drain is connected to a bitline (BL), and the gate is connected to a wordline (WL).



| 1   |   |
|-----|---|
|     |   |
|     | _ |
|     | _ |
|     |   |
| 1.0 |   |

# Comparison

### Comparison of features of various memories

|                       | 1T QW DRAM      | 1T DRAM                         | DRAM            | SRAM               |
|-----------------------|-----------------|---------------------------------|-----------------|--------------------|
| Structure             | 1T              | 1T                              | 1T/1C           | 6Т                 |
| Cell Size             | 4F <sup>2</sup> | 4F <sup>2</sup>                 | 8F <sup>2</sup> | 100F <sup>2</sup>  |
| Storage               | Quantum Well    | Floating Body                   | Capacitor       | Flip Flop          |
| Speed                 | Fast            | Fast                            | Fast            | Ultra Fast         |
| Read                  | Non destructive | Non destructive                 | Destructive     | Non<br>destructive |
| Scalability<br>Issues | Lithography     | Lithography<br>Volume reduction | Capacitor       | 6T size            |
| New<br>Materials      | Ge, SiGe, III-V | None                            | High K          | None               |



# What we did?

 We experimentally demonstrated and characterized a vertical (current flow perpendicular to the wafer) source (bottom)/drain (top), double gate (DG) capacitorless-single transistor DRAM on a bulk silicon wafer.

The front MOS structure <= conventional switching transistor The back MOS structure <= to create the floating body storage node. By reverse biasing the back gate => obtain a memory operation even for the <u>scaled</u> <u>fully depleted</u> devices.



M. G. Ertosun et al, IEEE Elec. Dev. Let., vol.29, no.6, June 2008

# **Sentauros Simulation Results:**

0.2

-0.2

0

0.2

(um)

IT DRAM operation

STANFORD

 A clear difference in Id for R1 and R2 (~15µA) confirms a memory.



0.2

(um)

4

0.2

-0.2

# Experimental Data: I<sub>d</sub> vs. V<sub>d</sub>

STANFORD

# Figure shows the onset of <u>kink effect</u> caused by excessive hole accumulation aided by negative Vg2.

Also, experimentally: A  $3-6\mu A/\mu m$  Id difference between fresh and programmed cell reads is maintained up to 10ms; whereas a sensed current difference is ~ $1\mu A/\mu m$  after 25ms of retention.



### Simulation:



M. G. Ertosun et al, IEEE Elec. Dev. Let., vol.29, no.6, June 2008

M. G. Ertosun , K. Saraswat, SISPAD 2009



# Novel 1T-QW DRAM

- We propose a new kind of capacitorless DRAM: 1Transistor-Quantum Well structure:
  - "storage pocket"
  - opportunity to engineer spatial hole distribution within the body of the device



Hole Density during Program

(Tbody=40nm, No Quantum

Well).

| È |  |
|---|--|

# **Spatial Hole Distribution Engineering**



Hole Density during Program in the device with Quantum Well (Tbody=40nm, Tback=10nm).



M. G. Ertosun et al, IEEE Elec. Dev. Let., vol.29, no.12, Dec 2008



# Effect of QW position:

Effect of Quantum Well Position



M. G. Ertosun et al, IEEE Elec. Dev. Let., vol.29, no.12, Dec 2008

When the QW is shifted: the improvement:



# Retention: Ge Content



SiGe:

- i) Improvement in erased state degradation
- ii) Reduction in the need for PowerErase
- iii) Easier fabrication

M. G. Ertosun , K. Saraswat, SISPAD 2009

## Conclusions

### We have experimentally shown:

- For the first time a
- vertical double gate (DG)
- capacitorless-single transistor (1T) DRAM
- on a bulk silicon wafer,
- fabricated with process innovations
- Double Gate Capacitorless DRAM is analyzed.
- A novel single transistor double gate quantum well DRAM (1T QW DRAM) is introduced.
- This new DRAM has several advantages in terms of performance and scalability.
  - "storage pocket" within the device.

M. Günhan Ertosun

- possibility of engineering the spatial distribution of the holes
- ability to have higher V<sub>t</sub> shift and also retention values
- better candidate for scaled new technology nodes.

DRAM

