Architectures for Extremely Scaled Memories Paul Franzon

Department of Electrical and Computer Engineering

paulf@ncsu.edu

919.515.7351

High Level Overview

Challenges for Memories

- Bandwidth
- Power consumption
- Resiliency
- Flexibility
- Scaling (density, size, level of integration)

Opportunities for Memories

- ▷ 3DIC with TSV
- Architectural Customization
- Use of memory in computing

Challenge: Bandwidth

Soon to exceed 1 TBps

	2004	Multi-core	Reverse	Reverse
	Baseline	Approach	scaling	scaling
Frequency	4 GHz	8 GHz	8 GHz	4GHz
No. of Cores	1 Core	4 Cores	16 Cores	16 Cores
Core rel. IPC	1	1	0.5	1
Total Flops	32 GFlops	256 GFlops	512 GFlops	512 GFlops
Supply	1.2V	1.0V	1.0V	1.0V
Power	84W	233W	233W	117-163W
Bandwidth	32GB/s	256GB/s	512GB/s	512GB/s
requirement				

MULTICORE AND REVERSE SCALING

Intel

Future microprocessors and off-chip SOP interconnect

Hofstee, H.P.;

Advanced Packaging, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on] Volume 27, Issue 2, May 2004 Page(s):301 - 303

Challenge: Power

Specifically providing this bandwidth at reduced power

▷ DDR3 : 1 TBps \rightarrow 600 W of power

Figure 6.25: DDR3 current breakdown for Idle, Active, Read and Write.

NC STATE UNIVERSITY **Comparative power consumptions** 4.8 nJ/word DDR3 0.4 nJ/cycle MIPS 64 core* 45 nm 0.8 V FPU 38 pJ/Op 128 pJ/Word 20 mV I/O 💻 40 pJ/Word Rotating Disk (64 bit words)

Without better solutions, memory power will dominate computing

* At 90 nm. Includes 40 kB cache, no FPU

-16 Demux

VTERM

16/1~

DQ15..0

\$ 16

DQN15..0

16:1 Mux

16/tc/

Inefficient

Where does the power go?

Command, address, data pipeline and "assist" circuits

- Many flip-flops
- DRAM process not ideal

Input/Output

- Difficult timing specs consume considerable power
- ▷ > 40 mW/pin

Figure 6.24: Block diagram of 1Gbit, X8 DDR2 device.

Power Scaling

Scaling Core Voltage

- ▹ Today 1.8 V
- ▶ Tomorrow, possibly 1.0 V, but scaling slowly
- ▹ What would be required to scale to 0.6 V?
- Advantages: Core power reduction; Reduced need for charge pumps

Scaling Command/Address/Data power

- Complex pipeline with many registers
- Increased desire for this pipeline to be configurable, increasing its design challenge and power consumption

Challenge: Resiliency

Issues:

- ▷ Soft Error Rate (SEU) of SRAM
- Checkpointing and resiliency of entire processor
- Future scaled server computers could spend 80% of their time checkpointing

	FIT per	Components per	FIT per
Component	Component	64K System	System
DRAM	5	608,256	3,041K
Compute + I/O ASIC	20	66,560	1,331K
ETH Complex	160	3,024	484K
Non-redundant power supply	500	384	384K
Link ASIC	25	3,072	77K
Clock chip	6.5	1,200	8K
Total FITs			5,315K

Table 6.12: BlueGene FIT budget.

Note: DRAM Failures almost all due to packaging

Challenge: Cost per bit

Issues:

Technology	Cell Size	Comments
DRAM	6F ²	Capacitance scaling challenge
Flash	4.5F ²	Scaling uncertanties
PCRAM	5.5F ²	Density Challenges
Resistive RAM	$4F^2 - 6F^2$	Most promising?
		F can be small.

- ▶ **Fill Factor** (% of total silicon area used for memory cells)
 - Sub-array size
 - Area of peripheral and interface circuits
 - ▷ Most DRAMS ~ 30% 40%

Figure 6.13: ITRS roadmap memory density projections.

Speed/Power $\leftarrow \rightarrow$ Area tradeoff

Example: DRAM vs. Reduced Latency DRAM (RLDRAM)

(a) A Conventional DRAM

(a) A Reduced Latency DRAM

Figure 6.20: Reduced latency DRAM.

High Level Overview

Challenges for Memories

- ► Bandwidth
- Power consumption
- ▹ Resiliency
- ▹ Flexibility
- ▷ Scaling (density, speed, power)

Opportunities for Memories

- ▷ 3DIC with TSV
- Architectural Customization
- IR1D cell
- Increased use of memory in logic and routing

3DIC with Through Silicon Vias

S. Denda, Nagano Prefectural Institute of Technology.

Coarse pitch TSV

 \triangleright Pitch: 40 μ m to 250 μ m

Advantages

- Reduces need for wafer thinning
- Established production route because of cell phone cameras

Disadvantages

- Limits architectural solutions
- Really Advanced Packaging, not advanced integration

Samsung

High Density TSV

 \triangleright Pitch: 1 µm to 10 µm

Advantages:

 Permits architectural optimization

Disadvantages

- Adds processing cost
- Adds complexity in design and test
- Limited supply chain

MIT LL

3-Tier 3DIC Cross-Section Second DARPA *Multiproject Run* (3DM2)

Two Digital & One RF 180-nm 1.5V FDSOI CMOS Tiers

3DM2 Process Highlights

11 metal interconnect levels 1.75-μm 3D via tier interconnect Stacked 3D vias allowed Tier-2 back-metal/back-via process 2-μm-thick RF back metal Tier-3 W gate shunt Tier-3 silicide block

MIT Lincoln Labs

Tezzaron 3D Technology: 0.13 um Bulk CMOS

3DIC and Memory

Immediate application space:

- > 3D memory stacking with coarse pitch TSVs
- Challenges:
 - Justifying initial cost
 - Cost scaling

More exciting application space:

- 3D-specific architectures
 - Memory-on-logic
 - High-density TSVs
- Challenges
 - Cost; test; design complexity

Example

D 3D Synthetic Aperture Radar Processor

Specifically FFT engine

Opportunities Exploited

- Co-architected memory and logic
- **D 3D specific design achieved the following**
 - ▷ 65% power reduction
 - 800% increase in memory bandwidth
 - At cost of 22% increase in total silicon area (for the repartitioned memory)

▷ 1024 point FFT:

16 GFLOPS, 50 GBps in 2.6 x 3 mm

3D FFT for Radar Processor

2DIC "optimal" design (+/-)

One Big Slow Memory on Shared Bus

Table 3: Read and write energy from Cacti comparing the un-optimized to the optimized design.

Metric	Unopti.	Opti.	%
Wires (#)	150	2272	-1414.7%
Bandwidth $(GBps)$	13.4	128.4	854.9%
Energy Per Write (pJ)	14.48	6.142	57.6%
Energy Per Read (pJ)	68.205	26.718	60.8%

3DIC Optimal design

Multiple Individual Fast Memories

- 60% reduction in memory power
- 67% increase in memory area
- 8x increase in bandwidth

3D FFT Floorplan

Support multiple small memories WITHOUT an interconnect penalty

Gives 60% memory power savings

Memories communicate vertically only

NC STATE U

Implications of 3D

Multiple Individual Fast Memories

What are differences between 2D and 3D implementations of <u>THIS</u> architecture?

Metric	$2\mathrm{D}$	3D	%
Total Area (mm2)	31.36	23.40	25.3%
Core Area (mm2)	29.16	20.16	30.9%
Mean Net Length (um)	836.0	392.9	53.0%
Total Wire Length (m)	19.107	8.238	56.9%
Max Speed (MHz)	63.7	79.4	24.6%
Critical Path (ns)	15.7	12.6	19.7%
Logic Power @ 63.7 MHz (mW)	340.0	324.9	4.4%
Logic Power @ 79.4 MHz (mW)	-	409.2	
FFT Logic Energy (nJ)	3.552	3.366	5.2%

NC STATE UNIVERSITY Memory bank size tradeoffs E.g. 32 x 2 kbit SRAM 10x less energy/bit than 1 x 64 kbit SRAM With 17% increase in area (partially recoverable by in 3D) SRAM_Energy 4.00E-09-4.50E-09 4.50E-09 3.50E-09-4.00E-09 4.00E-09 3.00E-09-3.50E-09 3.50E-09 3.00E-09 2.50E-09-3.00E-09 2.50E-09 Energy 2.00E-09 1.50E-09 1.00E-09 5.00E-10 0.00E+00 E read (1024 rows) E_read (512 rows) 8 16 32 E_read (256 rows) Rows 64 128 256 E_read (128 rows) 512

1024

Cols

TSV Placement

Floorplanning, TSV placement and partitioning are easier in a memory-on-logic device than a logic-on-logic design

e <u>A</u> nalyze <u>D</u> isplay <u>V</u> iew <u>O</u>	uery Settings Window Debug Help				
	12 2 4 10 10 10	E Q Q X X L X 84 (ן (] ♦		
	aus fir				ACT_C
				181	694.13
				12.2	P/
Mask Vi ×	155 222			1	81
AGT_A	122 122		the second se	· · · · · · · · · · · · · · · · · · ·	8
POLY_A	377 332				÷.'
CON_A	111 112 112			(FI	P
M1_A	772 222			11-1	
V12_A	122 444			18.8	
M2 A				10 A	
V23_A	255 555	Propher of the Propher of the Propher of the			
	1177 4994			17.1	
M3.B	225 222			12.0	
V23_B					
M2_B	222 223				1
V12_8					
M1_B				1000	1
BVIAO_B				100	
CON_B			and a state of the second		
POLY_B	377 101				-
ACT_B	101			121	
Dacity C				Contract of the owner owner owner owner owner	1
M3 C	arr bur			12.1	
V23_C	14 M 24		1	1	
M2_C	150 114				
V12_C				1.1	
M1_C	122 122			Harden -	
EVIAO_C					
CON_C				12 H	
POLY_C	155 175			F	
LONB ACT O	861 225				
				E.	2
Daoge c	205 225			10 A	
Check Al				·	11.
CHOCK AL				38-0	12
Uncheck All	130 222			121	4
	255 P25				6

17,634 TSVs

Power/Ground: • 4554 A $\leftarrow \rightarrow$ B • 4800 B $\leftarrow \rightarrow$ C

Signal: • 4140 A $\leftarrow \rightarrow$ B • 4140 B $\leftarrow \rightarrow$ C

0.14 mm² of TSV (1.7% area)

TSV Tradeoffs in FFT Processor

Process	Area loss
Lincoln Labs SOI	0.14 mm² 1.7%
Tezzaron bulk CMOS	0.02 mm ² 0.3%
Package style TSV	2 mm ² or more* (18%)

* Assumed "aggressive" effective 15 μ m pitch (i.e. TSV + keepout)

Circuit Level Partitioning

Above is block level partitioning

What about circuit level partitioning?

- Distributing banks amongst tiers?
- Distributing peripheral circuits
- ► Issues:
 - Size of TSV vs. memory cell
 - Capacitance of TSV

Distributing banks amongst tiers

▷ SRAM, DRAM:

- Potential advantages in a homogeneous technology memory stack are small
- Little potential to decrease power or area

Content Addressable Memory

- Searches memory for content
- Significant potential advantage
 - Due to high capacitance of match line
 - Match line == "found"

Search for "55"

3D CAM: Advantages over 2D

In CAM Memory Core,

- ▶ 40% C_ML (matchline capacitance) reduction
- 27% P_ML (matchline power) reduction
- > 23% overall power reduction
- Area (footprint) reduction of CAM core cells: ~50%

<Q3D model of interconnects for capacitance analysis>

	2D Structure	3D Structure with 3 Tiers	Power reduction in %
P_ML	2.9p	2.1p	27%
P_total	8.0p	6.2p	23%

Only makes sense in low-capacitance SOI process

Oh

Tezzaron "Dis-integrated RAM"

Mixed technology concept

- DRAM arrays in low-leakage DRAM technology (at node N)
- Peripheral circuits in high-performance logic process (at node N-1)
- Bit and word lines fed vertically at array edge

Expected results

- Reduced overall cost/bit
- Faster interfaces
- Lower latency
- Reduced power/bit
- Greater architectural flexibility

3DIC "Issues"

1. Cost

- Cost in low volumes with 12" equipment will be high
- Currently at bottom of volume and cost reduction learning curve
- Try to recover through unique product advantage and reduced silicon area

2. Test

- Known Good Die (or wafer) issues
- Changes RAM test and burn-in strategies

3. Thermal

- Power delivery / thermal dissipation codesign issue
- Must keep DRAM below 90 C

Exascale Computing Node

Snapshot of the future?

- "Extreme" stacking needed to manage bandwidth and energy
- One computing node:

Architectural Solutions

DDR optimized towards cache row refill

And well suited for little else

Architectural Opportunities created by 3DIC RAM:

- Can separate memory array structure from architectural specification
- E.g. Tezzaron supplies "raw" multi-bank memory with SDRAM style interface
- Permits co-optimization of floorplan, logic, and memory
- With CPU cores, fast 3D RAM removes need for L2 cache

Nanoscale Emerging Memory Solutions

⊳ 3DIC

"Dis-integrate" with non-MOSFET based memories

Non-volatile memory

- Integrated functionality to improve resiliency of computers and logic
 - E.g. Embedded check-pointing

Neuromorphic computing

Need: Analog memory or high density digital memory with DAC

Non-memory applications of emerging memory

Routing; Analog functions

Neuromorphic Computing

FACETS Stage 2 Technology

Neural Processing Unit, up to 2x10⁵ Neurons, 5x10⁷ Synapses

Need for scaling:

- Fast compact analog memory
- ▶ 3DIC

Voltage dependent part, changes membrane conductance

Synaptic Computation Model

Computing *Differently* - A Potential Approach to Living with the Constraints of the Nanoscale - Motivators - Technological Approaches and Achievements - Poture Challenges and Plans - Market Mediators - Market Mediators - Market Mediators - Market Mediators - Market Mediators

Metal Nanocrystal Floating Gate

- High density of states
- Reliable
- Good retention

Example: NC FG-based FPGA

a)

- Shows benefit of a memory device in a static reconfigurable interconnect application
- Palladium Metal nanocrystal flash reduces programming voltage to 3-4 V

 Table 1: Results for 16 bit Carry Ripple Adder (Design I) and

 32-tap FIR Filter (Design II)

	NC	SRAM	NC	SRAM
	Design 1	Design 1	Design II	Design II
Area				
- Logic	$27 \mu\text{m}^2$	$27 \mu m^2$	128 µm ²	128 μm ²
- Con Bl	$7 \mu m^2$	10 µm ²	317 µm ²	490 μm ²
- Sw Box	33 µm ²	113 µm ²	394 µm ²	1358 μm ²
- Total	66 µm ²	194 µm²	839 µm²	1977 μm ²
Power				
- Static	14 μW	87 μW	149 µW	1273 μW
- Total	63 μW	149 µW	1491 μW	4101 μW

8x power savings 4x area savings

Conclusions

Memory Business readying for disruptive change

- Mix of rising challenges and emerging opportunities
- Key: Delivering new technological responses costeffectively

▷ Challenges

- Bandwidth
- Power at this bandwidth
- ▷ Cost

Opportunities

- ▷ 3DIC
- ▷ 1D1R memory
- Non-traditional architectural mixes

Acknowledgements

William Rhett Davis, Michael B. Steer, Mehmet Ozturk, Hua Hao, Steven Lipa, Sonali Luniya, Christopher Mineo, Julie Oh, Ambirish Sule, Thor Thorolfsson, Chirs Amsinck, Neil DiSpigna, Shep Pitts, Daniel Schinke, Department of Electrical and Computer Engineering NC State University

Acknowledgments

My colleagues on

Final Report Exascale Study Group: Technology Challenges in Achieving Exascale Systems

ExaScale Data Center

TeraScale Embedded

PetaScale Departmental

Benefits of 1R1D cell

- Permits highest core density
- ▶ With high on:off ratio, large arrays are possible

On:off Ratio	Max. Array
7:1	64x64
13:1	128X128
100:1	1225X1225
1000:1	12kX12k
8000:1	1MX1M

C. Amsinck, N. DiSpigna, D. Nackashi, P. Franzon, "Scaling constraints in nanoelectronic random-access memories," Nanotechnology 16(10), Oct. 2005, pp. 2251 – 2260.

3DIC Test

 Problem: Yield impact of accumulated (untested) silicon area

Wafer on wafer stacking

 Test before assembly has uncertain utility

Chip on wafer stacking

Known Good Die potentially highly useful

One	Two	Three	Four
tier	tiers	tiers	tiers
95%	90%	85%	81%

3DIC Test

Wafer probing a multi-thousand pin TSV field is unscalable

5 μ m pad alignment

100 kg contact force

- ▶ Logic die:
 - Need Known Good Die solution with compact test set

▷ Memory stack:

Need yield management and Known Good Die solution

TSV Self-Test

- 1. Self-test for leakage easy to implement
- 2. Gives 1/0 answer for read-out via scan chain

Power delivery, I/O and thermal

1. 2D chip:

- Heat spreader next to heat source
- Short Idd Iss wires
- Short I/O wires over oxide

2. 3D chip:

- Bottom side power and signal delivery
- Top-side heat dissipation
- Through TSVs needed for thermal dissipation
- Through TSVs increase LCR of Vdd, Gnd and IO

