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High Level Overview

Challenges for Memories

> Bandwidth

> Power consumption

> Resiliency

> Flexibility

> Scaling (density, size, level of integration)
Opportunities for Memories

> 3DIC with TSV

> Architectural Customization
> Use of memory in computing




Challenge: Bandwidth

> Soon to exceed 1 TBps

MULTICORE AND REVERSE SCALING

2004 Multi-core Reverse Reverse
Baseline Approach scaling scaling
Frequency 4 GHz 8 GHz 8 GHz 4GHz
No. of Cores 1 Core 4 Cores 16 Cores 16 Cores
Core rel. IPC 1 | 0.5 1
Total Flops 32 GFlops 256 GFlops 512 GFlops 512 GFlops
Supply 1.2V 1.0V 1.0V 1.0V
Power 84W 233W 233W 117-163W
Bandwidth 32GB/s 2560GB/s 512GB/s 512GB/s
requirement

Future microprocessors and off-chip SOP interconnect

Hofstee, H.P.:

Advanced Packaging, |IEEE Transactions on [see also Components, Packaging and
Manufacturing Technology. Part B: Advanced Packaging, IEEE Transactions on]
Yolume 27, Issue 2. May 2004 Page(s):301 - 303




Bandwidth

scaled bandwidth requirements
> 0.2 -0.5TBps required soon

Graphics, and Networking have similar

> Networking has low latency requirements

1 Tbps
Advanced
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Lookup Lookup
Tables Tables
Packet Packet
N Delivery | ... Delivery
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Packet
Delivery

OC768
(40 Gbps)

4



Challenge: Power

Specifically providing this bandwidth at reduced
power

>~ DDR3:1TBps = 600 W of power
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Figure 6.25: DDR3 current breakdown for Idle, Active, Read and Write.



Comparative power consumptions

DDR3 I 4.8 nJ/word

MIPS 64 core* 0.4 nJ/cycle
45nm 0.8V FPU m 38 pJ/Op
20 mV |/O = 128 pJ/Word
Rotating Disk O 40 pJ/Word

(64 bit words)

Without better solutions, memory power will dominate computing

* At 90 nm. Includes 40 kB cache, no FPU 6
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Where does the power go?
16,000 bit fetch

Core
> Cell:25fF@ 1.8V
> 81 fJ per bit

> Row
> 8k to 16kbit wide
> Drivenat 2.5V
> 2.5 nJ/burst (1-4 bits)

> Sense amps

> Charge pumps to supply
1.8 and 2.5 V to core

> |nefficient




NN
Where does the power go? '

IDDawW

Command, address, data
pipeline and “assist”

> Many flip-flops

> DRAM process not
ideal

Input/Output

> Difficult timing specs | dnie
consume considerable e 625 Block dingam ot 101, X5 DR deviee
power

> > 40 mW/pIn




Power Scaling

Scaling Core Voltage
> Today 1.8V
> Tomorrow, possibly 1.0 V, but scaling slowly
> What would be required to scale to 0.6 V?
> Advantages: Core power reduction; Reduced need for
charge pumps
> Scaling Command/Address/Data power
> Complex pipeline with many registers

> Increased desire for this pipeline to be configurable,
Increasing its design challenge and power consumption
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Issues:

Challenge: Resiliency

> Soft Error Rate (SEU) of SRAM
> Checkpointing and resiliency of entire processor

> Future scaled server computers could spend 80% of
their time checkpointing

FIT per Components per | FIT per
Component Component 64K System System
DRAM 5 608,256 | 3,041K
Compute + /0O ASIC 20 66,560 | 1,331K
ETH Complex 160 3,024 484K
Non-redundant power supply 500 384 384K
Link ASIC 25 3,072 77K
Clock chip 6.5 1,200 8K
Total FITs 5.315K

Note: DRAM Failures almost all due to packaging

Table 6.12: BlueGene FIT budget.
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Challenge:

Cost per bit

Issues:
> Cell Size

Technology Cell Size Comments

DRAM 6F2 Capacitance scaling
challenge

Flash 4.5F2 Scaling uncertanties

PCRAM 5.5F2 Density Challenges

Resistive RAM 4F2 — 6F2 Most promising?

F can be small.

> Fill Factor (% of total silicon area used for memory cells)
> Sub-array size
> Area of peripheral and interface circuits
> Most DRAMS ~ 30% - 40%

11



Density and Scaling

DRAM

Density Relative to JRAM

10.00

0.01

2005

2010 2015
—4&— \ILC Flash ——m-- S| C Flash = = A==PCRAM(BJT)
PCRAM(NMQOS) ---*---eDRAM-densest —&— MRAM
=t aDRAM-fastest =— —= =FeRAM —— SRAM

Figure 6.13: I'TRS roadmap memory density projections.

2020

MLC Flash

PCRAM

MRAM
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Speed/Power €-> Area tradeoff

Example: DRAM vs. Reduced Latency DRAM
(RLDRAM)

(a) A Conventional DRAM (a) A Reduced Latency DRAM

Figure 6.20: Reduced latency DRAM.
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High Level Overview

v VvV V V

>

>

>
>
>

Opportunities for Memories

3DIC with TSV

Architectural Customization

1R1D cell

Increased use of memory in logic and routing

14



3DIC with Through Silicon Vias

Technoloav set:

Insulator l Deep RIE
deposition ] ' etching
| | v 3 BB
(X ray image) : -
Top and back High asfpact :
bump formation Cu plating Wafer Thinning

S. Denda, Nagano Prefectural Institute of Technology.
15



Coarse pitch TSV

> Pitch: 40 um to 250 pm

> Advantages

> Reduces need for wafer
thinning

> Established production route
because of cell phone
cameras

> Disadvantages
> Limits architectural solutions

> Really Advanced Packaging,
not advanced integration

| Current Technology |

Lens halder

Board —_—

| CECM Technology

Balls of soldear

IR cut filter

Through Chip Yia
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High Density TSV

> Pitch: 1 pum to 10 um

> Advantages:

> Permits architectural
optimization

MIT LL

> Disadvantages
> Adds processing cost

> Adds complexity in design and
test

> Limited supply chain

Tezzaron

17



3-Tier 3DIC Cross-Section
Second DARPA Multiproject Run (3DM2)

Two Digital & One RF 180-nm 1.5V FDSOI CMOS Tiers

Transistor Layers RF Back Metal

3DM2 Process Highlights

11 metal interconnect levels 2-um-thick RF back metal
1.75-um 3D via tier interconnect Tier-3 W gate shunt
Stacked 3D vias allowed Tier-3 silicide block

Tier-2 back-metal/back-via process

MIT Lincoln Labs 18



Tezzaron 3D Technology: 0.13 um ;
Bulk CMOS
I

= O = O = e = = = = == I
1st wafer: controller
------= = ==

. g— —e=3 X Xk EE—-=
= LLLE L ALl T ===Cvia~4fF

=E 8= = ------
e T.1 I-f ;I'II'II'W
Dielectnc(S102/51N) ,“Super—Gcntact”
/
 Gate Poly Snd f
v STl (Shallow Trench Isolation)  waier

l W (Tungsten contact & via)
Hl Al (M1 -M5)
Cu (M8, Top Metal)

3rd wafer

15t Si bottom supporting wafer Tezzaron 19




3DIC and Memory

Immediate application space:
> 3D memory stacking with coarse pitch TSVs
> Challenges:
> Justifying initial cost
> Cost scaling
More exciting application space:
> 3D-specific architectures
> Memory-on-logic
> High-density TSVs
> Challenges
> Cost; test; design complexity

20



Example

> 3D Synthetic Aperture Radar Processor
> Specifically FFT engine

> Opportunities Exploited
> Co-architected memory and logic

> 3D specific design achieved the following
> 65% power reduction

> 800% increase in memory bandwidth

> At cost of 22% increase in total silicon area (for the re-
partitioned memory)

> 1024 point FFT:
16 GFLOPS, 50 GBps in 2.6 x 3 mm

21



3D FFT for Radar Processor

2DIC “optimal” design (+/-)

| Memory

PEO PE 1

One Big Slow Memory on Shared Bus

Table 3: Read and write energyv from Cacti compar-

PE 2

PE 3

-

ing the un-optimized to the optimized design.

3DIC Optimal design

Mem| Mem| Mem| Mem| Mem| Mem| Mem| Mem)|

Metric Unopti. | Opti. Y%
Wires (&) 150 | 2272 | -1414.7%
Bandwidth (G Bps) 13.4 | 1284 854.99%
Energy Per Write (pJ) 14.48 | 6.142 57.6%
Energy Per Read (pJ) 68.205 | 26.718 60.8%

] [
] I I I E [ |
\ Even / \ Odd / \ Even / \ Odd / \ Even / \ Odd / \ Even / \ Odd /

i i i O
PE O PE 1 PE 2 PE 3

Multiple Individual Fast Memories

 60% reduction In
memory power

* 67/% Increase in memory
area

e 8x Increase in bandwidth

22



3D FFT Floorplan

Support multiple small memories WITHOUT an
Interconnect penalty

€ Gives 60% memory power savings

€ Memories communicate vertically only
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Implications of 3D

Mem| Mem| Mem| [Mem| Mem| Mem| [Mem| [Mem|

PEO

PE 1

1 i
| | I I |
[ L 1 1 [
\Even.n_" EOdd,l" \EvenJ—"l EDdd;' \Even;_" EOﬂd}" \Evend—"l Eﬂddf

PE2

PE 3

Multiple Individual Fast Memories

What are differences between 2D and 3D
Implementations of THIS architecture?

Metric 2D 3D Yo
Total Area (mm2) 31.36 | 23.40 | 25.3%
Core Area (mm?2) 20.16 | 20.16 | 30.9%
Mean Net Length (um) 836.0 | 392.9 | 53.0%
Total Wire Length (m) 19.107 | 8.238 | 56.9%
Max Speed (MHz) 63.7 | 79.4 | 24.6%
Critical Path (ns) 15.7 | 12.6 | 19.7%
Logic Power @ 63.7 MHz (mW) | 340.0 | 3249 | 4.4%
Logic Power @ 79.4 MHz (mW) - | 409.2 —
FFT Logic Energy (nJ) 3.552 | 3.366 | 5.2%

24



NC STATE UNIVERSITY

Memory bank size tradeoffs
E.g. 32 x 2 kbit SRAM 10x less energy/bit than 1 x 64

Energy

kbit SRAM

¢ With 17% increase in area (partially recoverable by in 3D)

4.50E-08

4.00E-09

3.50E-08-

3.00E-05-

2. 50E-09-

2.00E-05-

1.50E-0

1.00E-08

5.00E-104

SRAM_Energy
.--""'f

A

N

0.00E+D0D

Cals 512

1024

M 4 00E-09-4 50E-09
O 3.50E-09-4.00E-09

B 2 00E-09-3.50E-09

0 2 50E-09-3.00E-09

E_r=ad (512 rows]

E_read {255 rows) an
E_r=ad (125 mows)

25



TSV Placement

Floorplanning, TSV placement and partitioning are
easier in a memory-on-logic device than a
Ioglc on- Ioglc deS|gn

17,634 TSVs

B}

‘8'3rEEEEo
i : ‘n g n
o

Power/Ground:
e 4554 A &—> B
«4800B &<> C

Signal:
4140 A <->B
°«4140B <> C

='g'a'g's’e ggs §EsE
LN SRl B 8RB o el b

EEEBBESE
i gk
l-lﬂ

0.14 mm? of TSV
(1.7% area)

Uneheek

T
CL g%

;

i
] e st . H
e B REERE e Fﬂm"'j.m}‘”lw"ﬂmf"mm@_l """ :"{ﬁs'j,ﬂ
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TSV Tradeoffs in FFT Processor

Process Area loss

Lincoln Labs SOI 0.14 mm?
1.7%

Tezzaron bulk CMOS |0.02 mm?
0.3%

Package style TSV

2 mm?2 or more*
(18%)

* Assumed “aggressive” effective 15 um pitch (i.e. TSV + keepout)

27



Circuit Level Partitioning

Above is block level partitioning

What about circuit level partitioning?

> Distributing banks amongst tiers? =

> Distributing peripheral circuits =

> |Ssues: |:;;.

> Size of TSV vs. memory cell
> Capacitance of TSV

28



Distributing banks amongst tiers

>

>

>

>

> SRAM, DRAM:

Potential advantages in a homogeneous technology memory

stack are small
Little potential to decrease power or area

> Content Addressable Memory

Searches memory for content

Significant potential advantage
> Due to high capacitance of match line
> Match line == “found”

Search for “55”

1

0A

55

“55” found.

At address OA

29



3D CAM: Advantages over 2D

In CAM Memory Core,

> 40% C_ML (matchline capacitance) reduction
>  27% P_ML (matchline power) reduction

>  23% overall power reduction
>

Area (footprint) reduction of CAM core cells:
~50%

<Q3D model of interconnects for ‘capacitance analysis>

2D 3D Power reduction
i Structure Structure in %
Lo 3l dit with 3 Tiers
P_ML 2.9p 2.1p 27%
P_total 8.0p 6.2p 23%

Oh

Only makes sense in low-capacitance SOl process

30
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% (a) 2D cross- 3000 -

sectional view | g nmmmmmmmmm—mm—aee
TCAM 8T 2500
N c c c
£ 2000 - = 2 =
> (8] o (&S]
— =] = =}
£ 1500 - 8 | 8 | %
: S 1000
Tier 3 3D via 3 = B B
o) S z
Metal imterconneet t & 500
Tier 2 0

(@ (b) (c) (d)

er 1 Footprint comparison

w
(3]
I

(b) Block partitioning (c) Stub cell partitioning

.l
)
e

TCAM cell

21% P_tot

et reduction
interconnect vs. 2D

TCAM core

3D via

(b) AlImost no benefit
(c) 32% reduction
(d) 40% reduction

Matchline Capacitance [fF]

2R N
o o1 o »u O
| | | | |

@ (b () (d
Matchline capacitance comparison
(Q3D field simulation)

(d) Stub shared cell partitioning
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Tezzaron “Dis-integrated RAM”

>

>

>

v VvV V V

> Mixed technology concept

DRAM arrays in low-leakage DRAM technology (at node
N)

Peripheral circuits in high-performance logic process (at
node N-1)

Bit and word lines fed vertically at array edge E

> EXxpected results

Reduced overall cost/bit
Faster interfaces

Lower latency

Reduced power/bit

Greater architectural flexibility

32



3DIC “Issues”

1. Cost

€ Costin low volumes with 12" equipment will be high

¢ Currently at bottom of volume and cost reduction
learning curve

€ Try to recover through unique product advantage and
reduced silicon area

2. Test

¢ Known Good Die (or wafer) issues

¢ Changes RAM test and burn-in strategies
3. Thermal

¢ Power delivery / thermal dissipation codesign issue
¢ Must keep DRAM below 90 C

33



Exascale Computing Node

Snapshot of the future?
€ “Extreme” stacking needed to manage bandwidth and energy
4 One computing node:

Interposers

CPU: 750 Cores

Vias

16-32 DRAM die,
In groups

Substrate

10 TBps

34



Architectural Solutions

DDR optimized towards cache row refill
> And well suited for little else

Architectural Opportunities created by 3DIC RAM:

> Can separate memory array structure from architectural
specification

> E.g. Tezzaron supplies “raw” multi-bank memory with
SDRAM style interface
> Permits co-optimization of floorplan, logic, and memory

>  WIith CPU cores, fast 3D RAM removes need for L2
cache

35
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Nanoscale Emerging Memory
Solutions

> 3DIC
> “Dis-integrate” with non-MOSFET based memories

> Non-volatile memory

> Integrated functionality to improve resiliency of
computers and logic

> E.g. Embedded check-pointing

> Neuromorphic computing

> Need: Analog memory or high density digital memory
with DAC

> Non-memory applications of emerging memory
> Routing; Analog functions

36



Neuromorphic Computing

Need for scaling: N

dv —— N
o = ~Bea(V = B)+ X P&V - E.)+ 3, pigi(V - E)

D Fast CO m paCt an aI Og m e m O ry membrane leakage sum ovek excitator sum over inhibitory

1
current current synapse currents k synapse currents [
A}

> 3DIC

Voltage dependent part, changes membrane

FACETS Stage 2 Technology conductance
Neural Processing Unit, up to 2x10°> Neurons, 5x107 Synapses Synaptic Computation
Idea : Separate Neural Circuits and Monitoring/Readout/Control Model

Control and
Communication
FPGAs

Control and
Communication
PCB

Control and
Communication
ASICs (DNC)

Computing Differently - A Potential
Approach to Living with the
Constraints of the Nanoscale

Vertical High Speed
and Power
Connection Matrix

> Motivations
= Technoiogical Approaches and Achievemenis

Post-Processed S, . > Fulure Challenges snd Plang
Neural Network ~ao ! oo A B <
Wafer (8 \AﬁCh) s - July 3031 2009 San Frabeinch, CA




Threshold Voltage (V)

NC STATE UNIVERSITY

Nano In Logic

Key: Highly programmable,
analog FET based on
nanocrystal metal floating
gate

Threshold Voltage vs. Program/Erase Time

Microns

1.5

1_ __________________________________________________________________________________
05 Ao T T T T e e
1] + —t— +—t—1 +—t— +—t—t L — ——t +—+— +—t
10ps 2ps s 40ns S0ps Metal Nanocrystal
S O, Floating Gate

» High density of states
* Reliable

-1.5

» Good retention
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Example: NC FG-based FPGA

1.

Shows benefit of a memory
device in a static reconfigurable
interconnect application

Palladium Metal nanocrystal flash
reduces programming voltage to

3-4V

Table 1: Results for 16 bit Carry Ripple Adder (Design I) and

32-tap FIR Filter (Design IT)

NC SRAM NC SRAM
Design 1 Design 1 DesignIl | Design II
Area
- Logic 27 um® 27um’ | 128 um? | 128 um’
- Con Bl 7 um 10 Ium2 317 :.ng 400 .I.ng
- Sw Box 33um” | 113pm” | 394 um’ | 1358 um’
- Total 60 .I.I.lllz 194 unf 339 _LL1112 1977 _Lun2
Power
- Static 14 pW 87 uW 149 pwW 1273 pWw
- Total 63 pW 149 pW 1491 pW | 4101 pW

8x power savings
4x area savings

[ ] [ ]
nl
[ ]
[ ] [ ]
Switchbox
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Conclusions

> Memory Business readying for disruptive
change

> Mix of rising challenges and emerging opportunities

> Key: Delivering new technological responses cost-
effectively

> Challenges
> Bandwidth
> Power at this bandwidth
> Cost

> Opportunities
> 3DIC

> 1D1R memory
> Non-traditional architectural mixes

40
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Benefits of 1R1D cell

> Permits highest core density

> With high on:off ratio, large arrays are possible

On:off Ratio | Max. Array
71 64x64

13:1 128X128
100:1 1225X1225
1000:1 12k X12k
8000:1 1MX1M

C. Amsinck, N. DiSpigna, D. Nackashi, P. Franzon, “Scaling constraints in nanoelectronic
random-access memories,” Nanotechnology 16(10), Oct. 2005, pp.

2251 - 2260.
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3DIC Test

> Problem: Yield impact of
accumulated (untested)
silicon area

> Wafer on wafer stacking

> Test before assembly
has uncertain utility

> Chip on wafer stacking

> Known Good Die
potentially highly useful

One |Two |Three Four
tier tiers |tiers tiers

95% |90% |85% 81%

Die from Si IC2

v
= A— mm—
S—

SiICc1
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3DIC Test

Wafer probing a multi-thousand pin TSV field is

unscalable
5 um pad alignment

100 kg contact force

> Logic die:
> Need Known Good Die solution with compact test set

> Memory stack:
> Need yield management and Known Good Die solution

45
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Design For Test Sub-flow

Partitioning choices and DFT planning
dramatically impact ability and cost to achieve

B e

fan

this

Directed pattern speed scan testing

Mem] Mem] P‘em for der] or] Mom e Mem/ShadOW DFT scan registers

PE O

TSV integrity self-test

PE 1

PE 2

PE 3
\\ Registered IO to permit scan testing
Scan-based speed sorting

“leanly partitioned clocks Hierarchical test

46



TSV Self-Test

1. Self-test for leakage easy to implement
2. Gives 1/0 answer for read-out via scan chain

Testing circuit

Vdd

Scan In

i#[ | DOFF |

TSPC

Mode

Resistance Between TSV Scan Chain

and substrate




Power delivery, I/O and thermal

‘.‘ ‘.‘ ‘.‘ Heat Out (Watts)

1. 2D chip: —— |~
€ Heat spreader next to heat
source S B E N E = A

¢ Short Idd Iss wires lml /0 (Gbps)

¢ Short I/O wires over oxide
Current In (Amps)

2. 3D chip: ‘.“.‘"‘Heat Out (Watts)

4 Bottom side power and
s X B ——
signal delivery

€ Top-side heat dissipation //
€ Through TSVs needed for
¢

7

thermal dissipation P
Through TSVs increase _._*_._._*_._
LCR of Vdd, Gnd and 10

' . . . 11/0 (Gbps)

Current In (Amps)
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