Floating Body RAM (FBRAM) : Overview and Future Challenges

Takeshi Hamamoto

Device Process Development Center Toshiba Corporation

DRAM Cell vs FBC

2

Target of Floating Body RAM (FBRAM)

 High performance RAM, which can replace eSRAM.
Large Density RAM, which can replace eDRAM.

High performance/Large density RAM, which can be used as an embedded memory with Low Fabrication Cost.

Target of Floating Body RAM (FBRAM) ~Cont'd

	DRAM	eDRAM	FBRAM (1Cell/Bit)	FBRAM (2Cell/Bit)	SRAM
CellSize (F ²)	6 - 8	12 - 20	6	12	80
Process	CMOS + Capacitor	CMOS+ Capacitor	CMOS		CMOS
tRC (ns)	20	5	20	3	1
A dvan tage	H igh D ensity	High Performance	Low Cost		High Performance
Retention @ median (s) @85C	>10	>1	>0.1		—
Issue to shrink	Capacitor Transistor	Capacitor Transistor	Transistor		Transistor
Scalability Limits	S torage C apac itance	S torage C apac itance	Hole Density		S ignal S tab ility
Basis of m em ory	C harge S torage in C apac itor	C harge S torage in C apac itor	Charge Storage in Floaing Body		F-F

Overview of FBRAM development

FBRAM Technologies

- Cell Concept (ISSCC2002)
- Substrate Plate Cell (VL2004)
- FD Operation (IEDM2004)
- Salicide for Array Device (IEDM2004)
- > 128Mb FBRAM (ISSCC2005)

@ 90nm Tech.

- Well Design Optimized for Array & Supprot Device (IEDM2005)
- Cu Wiring used for SL and BL

(IEDM2005)

- Scalability Estimation (IEDM2006)
- Single Cell Operation (IEDM2007)
- Autonomous Refresh (IEDM2008)

Issue for Scaling Large Signal ✓ Keep ∆Vth ~ 0.40V Long Retention Time Suppress Emax ~0.70MV/cm Array Functionality Keep Signal-to-Noise Ratio (SNR) $SNR = \Delta Vth / \sigma Vth > 18$

Scalability of Partially-Depleted and **Fully-Depleted FBC** $\Delta V th \sim C_D / C_{ox} x \Delta V_{Body}$ To keep Δ Vth, C_n should be increased ! PD: Cox W_{D} reduction by high N_{Δ} WD \Rightarrow Degrade V_T fluctuation, junction leakage BOX Plate FD on thin BOX: Cox W_D reduction by Tsi reduction \Rightarrow Does Not Degrade BOX V_{T} fluctuation, junction leakage Plate

Memory Array Yield vs SNR

 $SNR = \Delta V_{th} / \sigma_{Vth} = \Delta I_{cell} / \sigma_{Icell} = const. > 18$

Id-Vg and Emax of Scaled FD-FBC

Vth Distribution & SNR @ 90nm Generation

TCAD Estimation of Vth Distribution & SNR @ 32nm Generation

Parameters of Scaled FD-FBC

	Generation	90nm	65nm	45nm	32nm
S truc ture	CellSize (µm²)	0.137	0.068	0.034	0.020
	Tsi (nm)	42	32	21	16
	Body Conc (cm ⁻³)	3.E+17	2.E+17	1.E+17	5.E+16
	Tbox (nm)	25	17	12.5	9
	Lg (nm)	150	110	75	55
	Tox (nm)	6.0	5.6	5.2	4.8
Bias	Vwlh (V)	1.5	1.35	1.2	1.0
	V w 11 (V)	-2.3	-2.0	-1.7	-1.45
	Vb l h (V)	2.2	1.9	1.7	1.5
	Vb11(V)	-1.5	-1.2	-0.9	-0.7
	Vp1(V)	-3.0	-2.7	-2.4	-2.1
Results	V th1 (V)	0.31	0.24	0.21	0.24
	V th0 (V)	0.72	0.66	0.67	0.67
	∆V th (V)	0.41	0.43	0.45	0.43
	Emax (MV/cm)	0.72	0.70	0.70	0.74
	SNR	18.3	17.9	17.9	20.5

Summary

FBRAM can be a candidate of future high-performance /large-density embedded memories with low fabrication cost.

FD-FBC is scalable down to 32nm node keeping signal margin (threshold voltage difference), retention time, and signal noise ratio (SNR) constant.