

The Unprecedented Power of Collaborative Research

PIDNEERS

COLLABORATIVE

RESEARCH

IN

Steven Hillenius

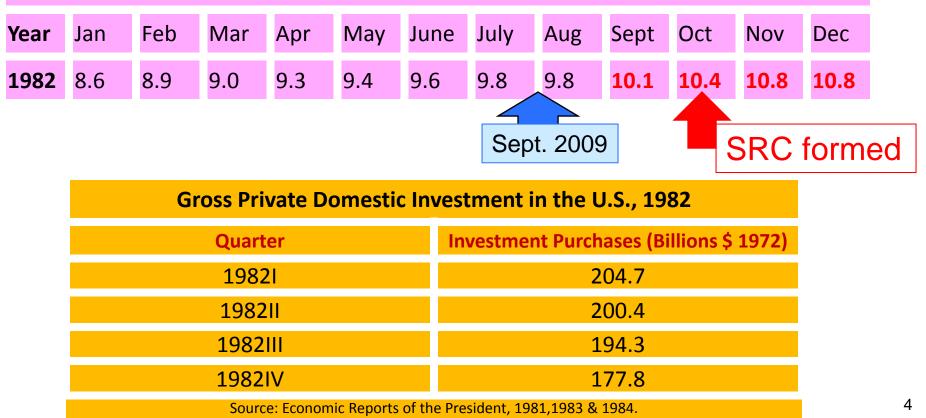
October 21, 2009

Outline

- The Economic/Research Landscape ~1982
- The Case for Collaborative Pre-Competitive Research:
 SRC Model
- The Impact of Pre-competitive Research
- Research Needs Assessment: The International Technology Roadmap for Semiconductors
- Citation Studies on R&D Pipeline Latency
 - Basic Research Life Cycles in Technology
- How might we collaborate in pre-competitive research for future memory technologies?

- Major semiconductor companies often conducted fundamental research internally
 - Costly facilities
 - Significant duplication due to restrictions on crossindustry sharing
 - Ineffective value extraction
 - We weren't close to fundamental physical limits for scaling

Economics forced a change in this paradigm


Economic Landscape in 1982

The Recession of 1980-1982

the most severe and the most significant in terms of economic impact of the post-World War II recessions.

U.S. Unemployment Rates Month-by-Month, 1982

Semiconductor Landscape in 1982

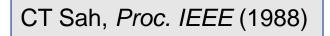
256 Kbit DRAM in production 2 μm minimum features

64 Kbit UV-EPROM in production

No flash memory as we know it today yet exists

SRC 1982 challenges: 64 Mbit DRAM 0.25 μm minimum features

Vision (circa 1982):


 "It is doubtful that one can scale the device dimensions to <u>below 0.1 μm</u> and gain any advantage in circuit performance because of several basic limitations"

Proc. IEEE (1983): A systems approach to 1 μ m NMOS by M.P. Lepselter, D.S. Alles, H. J. Levinstein, **G. E. Smith** (2009 Nobel Prize Recipient), H. A. Watson

- "MOS gate lengths of about 0.25 micrometer are <u>the practical scaling</u> <u>limit</u>" (1st SRC Annual Report–1984)
 - The SRC 0.25 micrometer CMOS research thrust is centered at Cornell University, with contributing projects at Wisconsin, Illinois, Stanford, Colorado State, Arizona, Yale, and Notre Dame

Disclosu Dates ^a Jbm. P		Authors-Inventors Development Team	Institutions or Locations ^b	Memory Density (bit/chip)	Device and Technology ^c	Reduction to Practice ^d	Ref.
	1985	IBM Essex Junction		1M	DRAM NMOS 1T2d SAMOS	Prod	[154]
		ATT, Fujitsu, Hitachi, Toshiba		1M	DRAM NMOS 1T2d	Eng	(154)
	1985			1M	DRAM NMOS 1T3d trench-C	Eng	[154]
	1985	IBM E. Fiskill, Yorktown Ht		64k-4M	DRAM PMOS 1T3d trench-C	Lab	[169]
	1985	Hitachi, Toshiba, NEC		4M	DRAM NMOS 1t3d trench-C	Lab	[170]
	1985	Chatterjee et al.	TI	- 4M	DRAM NMOS 1T3d > 1µm TCT	Lab	[173]
	1985	1BM Research	IBM	16M	DRAM NMOS 1T2d 0.5µm EB	Est	[198]
	1986	IBM-3090	IBM	1M	DRAM NMOS 1T2d SAMOS	Prod	[154]
	1986	MicroVAX-2 Toshiba/Chrislin		1M	DRAM NMOS 16MB/card	Prod	[154]
	1988	Matsushita, Toshiba, Hitachi		16M	DRAM CMOS 1T3d trench-C	Eng	[177]-[
	1995	SRC University Research		64M	DRAM CMOS 1T3d 0.25µm	Est	[130]

Table 3 Evolution of the Silicon MOS Random Access Memory (RAM) (1969-1988)

The iPod was un-imaginable circa 1980

Best available storage technology in 1976: IBM 3350

Do Basic Research and Applications/Markets will follow!

iPod(5G) 80GB

> **\$9,000,000 !!!** in 1976 dollars (storage only)

126 IBM 3350

units needed!

How can industry sustain its science base and technical infrastructure?

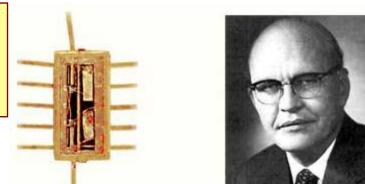
- Acquire smaller companies
- Depend on government-funded research
- Develop internal basic research infrastructure
- Invest in research contracting organizations
- Collaborate with competitors to fund stand-alone research organizations
- Collaborate with competitors to fund relevant research in universities (The SRC model)

The Case for Collaborative Research

27 Years of Semiconductor Research Corporation

1982- current: "Managed Research"

- The Semiconductor Research Corporation (SRC) was established in 1982 as a consortium of semiconductor companies to manage high priority university research
 - Concept of pre-competitive research defined
 - Shared resource, e.g. funding, technical directions etc.
 - Later, SRC emphasized enhanced interaction with government agencies to focus basic research
 - Concept of Needs Statements led to global collaboration, e.g.:
 - National Technology Roadmap for Semiconductors, which later became:
 - International Technology Roadmap for Semiconductors


SRC's "Founding Fathers"

Erich Bloch, **IBM** vice president Director of the National Science Foundation, Recipient of the National Medal of Technology

Robert Noyce, "the Mayor of Silicon Valley", co-founder of **Intel** and co-inventor of the integrated circuit.

Jack Kilby, Nobel Prize Laureate for the invention of the integrated circuit at **TI**

PIONEERS IN Collaborative Research®

Pre-Competitive Research by Industry and Consortia Enables Future Business Opportunities

Examples of the Impact of 1980's Basic Research on Products Widely Used Today

Basic research conducted in the 1980s resulted in remarkable changes in society today

SRC-supported Research Helped to Break the 0.1 μm Barrier (FET)

Precise Control of Atoms in Semiconductor Materials

- To make microchips with hundreds of millions and even billions transistors, it is critical to precisely control positions of impurity atoms and atom-size defects in semiconductor materials
- A complete understanding was developed in 1981-1989 as result of basic research by Prof. Plummer's group at Stanford under support of SRC and U.S. government
- This basic research has enabled shrinking the critical dimensions of devices on chip to 10-100 nanometers and let to production of e.g.
 - Micron 2 Gbit memory chip
 - Intel® Pentium® **
 - AMD Athlon[™]

SRC-supported Research Helped to Break the 0.1 μm Barrier (FG/Flash) Hot-electron injection in thin films of insulators

To make a reliable and small FLASH memory with **very high capacity**, it was necessary to understand the physics of hot-electron injection in thin films of insulators

The physics of hot-electron injection in thin insulator films was understood in 1984-1990 from basic research by Prof. Hu's group at Berkeley supported by SRC and U.S. government

This basic research has enabled today's digital cameras, pocket memory sticks, iPod nano etc.

Nobel Prizes in Physics for Industrial Research in Electronics (Selected Examples)

Basic Industrial Research Enables Business Opportunities

1956	Shockley Bardeen Brattain	AT&T	Semiconductor transistor	
1973	Esaki	Sony(Tokyo Telecom Eng) IBM	Semiconductor Tunnel Diodes	
2000	Kilby	Texas Instruments	Semiconductor Integrated Circuit	
2009	Boyle Smith	AT&T	Imaging semiconductor circuit – the CCD sensor	
201*	???	Advan	FLASH memory? ced Semiconductor Memory?	

Environmental requirements for successful collaborative research

- Growth-oriented industry
- Sufficient industry revenue base to support research
- Common/congruent technical interests
- "Can-do" attitude of industry participants to transform precompetitive research into competitive advantage
- Benign government policies with respect to precompetitive research collaboration

Agility by Structure

- Research conducted at ~100+ universities throughout the world
 - Employ best <u>current</u> experts anywhere in the world
 - **•** Over 40% of research performers are new in 5-year time horizon
 - ☆ ~ 1/3 of projects turned over every year
 - No permanent research staff
- Programs can be started, adjusted and/or stopped quickly
 - Each project reviewed annually by member companies
 - Allows for rapidly changing needs of member companies
- No capital costs
- Minimum overhead costs (best of any consortia in the world)

- Member-driven creation of *needs document*
- Request and submission of white papers
- Member review and selection to seek proposals
- Request for proposals
- Member review and selection of proposals to fund
- Internal SRC Research Management Committee review
- Three-year contract start (Typical) of core programs and research customization projects (RCP) selected by individual companies
- Annual member reviews of progress
- Submission of *reports and "deliverables*" by researchers

Lessons Learned About Collaborative Research

- 1. Industry can change technical directions/business model quickly; consortia must be agile; e.g., transitions from IDM to fabless by many companies
- 2. A company can speak with many voices; consortia need to work with top-management to the extent possible
- 3. Don't over-manage university research for in so doing creativity could be limited; knowledge and learning is their forte'
- 4. Enter co-sponsorship with other entities only when adequate assurances that the integrity of the research program and member interests are safe-guarded.
- 5. Consortia must be able to quantify the value of return to members on their investments

Lesson Learned About Collaborative Research

- 6. The resolution of pre-existing background intellectual property issues is perpetual, but very important in order for industry to utilize research results
- 7. The importance of knowledge transfer to members cannot be overemphasized
- 8. Use the time of member advisory boards wisely; they have day jobs!
- 9. Control operating expenses for they are in direct conflict with maximizing member leverage
- 10. Recruiting new members is a way of life for a consortium; the industry landscape constantly changes
- 11. The ability of a collaborative program to generate critical breakthroughs cannot be over-estimated

The power of setting goals

International Technology Roadmap for Semiconductors

PIONEERS IN

COLLABORATIVE

RESEARCH

Collaborative Research Management Requires Strategic Planning and Goal Setting

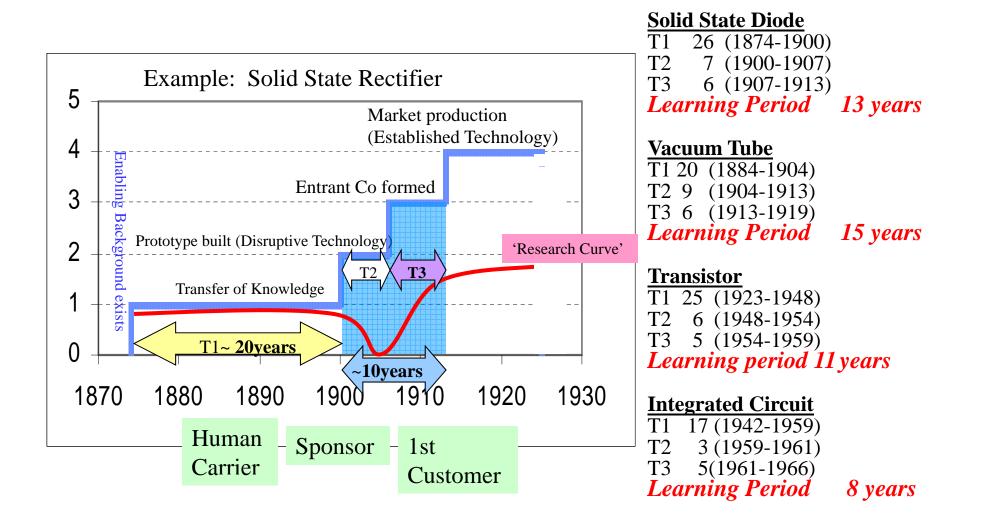
ITRS Origins

- 1983-1994: SRC announces ten year research goals
- 1990: SRC leadership in establishing NACS resulting in MICRO TECH 2000 for 0.12 micrometer semiconductor technology by 2000
- 1992: National Technology Roadmap for Semicondctors effort led by SRC and SIA to define industry five-year goals
- 1994: NTRS update and extension of horizon to fifteen years
- 1998: Roadmap is internationalized and becomes the International Roadmap for Semiconductors (ITRS)
- Two year major ITRS updates implemented

ITRS Emerging Research Devices Chapter

- Assess and details the potential of emerging nanoelectronic devices
- In 2001-2009 ERD affirmed that no currently proposed device approach to "post CMOS" logic is a likely candidate to continue scaling of information processing much beyond that attainable by CMOS.
- On the other hand, the assessment for emerging memory device concepts was more encouraging
 - Several Emerging Memory Technologies Show Promise
 - **Some were addressed in this Forum**

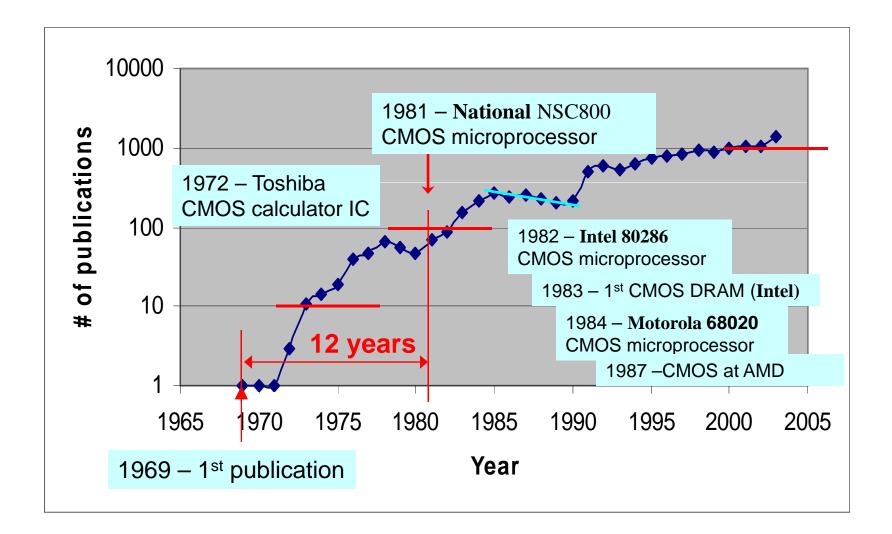
Estimates of R&D Pipeline Latency for the Semiconductor Industry


A brief review of R&D cycle times for classical electronic technologies
 Selected recent technology cycle times

The case for continuous re-invention of semiconductor technologies

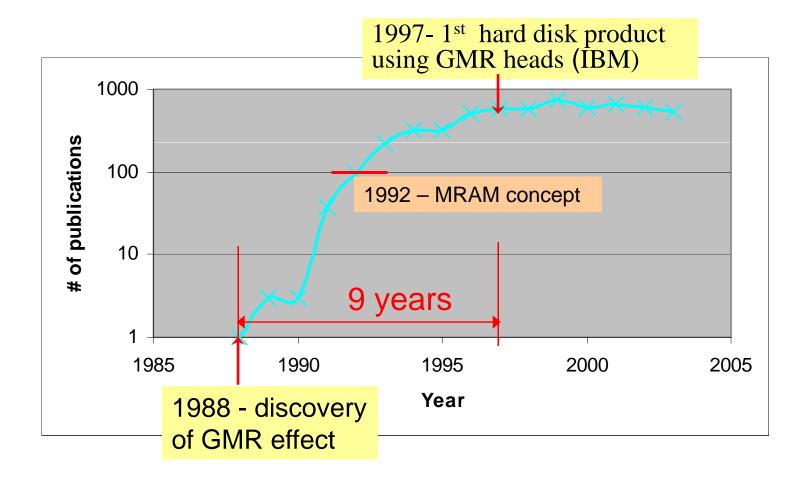
Message: There is ample time for pre-competitive research prior to marketplace competition

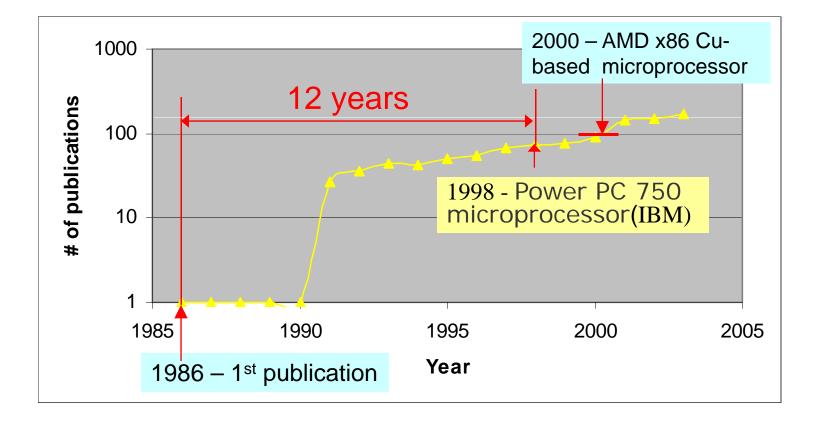
Study of of R&D Latency for a few Semiconductor Technologies


- CMOS transistor
- Giant Magnetoresistance (GMR)
- Copper Interconnect
- 193 nm photoresist
- Magnetic Random-Access Memory (RAM)

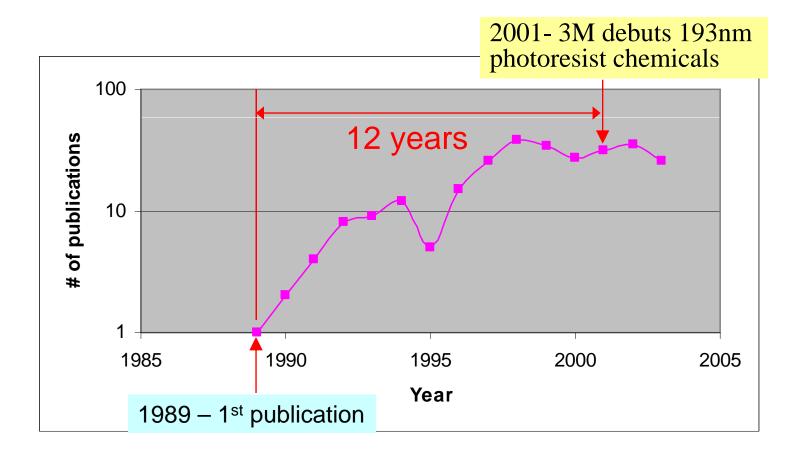
Method. We used the following parameters:

- 1) The first publication on a given technology that appeared in the <u>Science Citation Index</u> database
- 2) The number of refereed articles in technical journals by year (<u>Science Citation Index</u> database)
- 3) The year of first production for a given technology

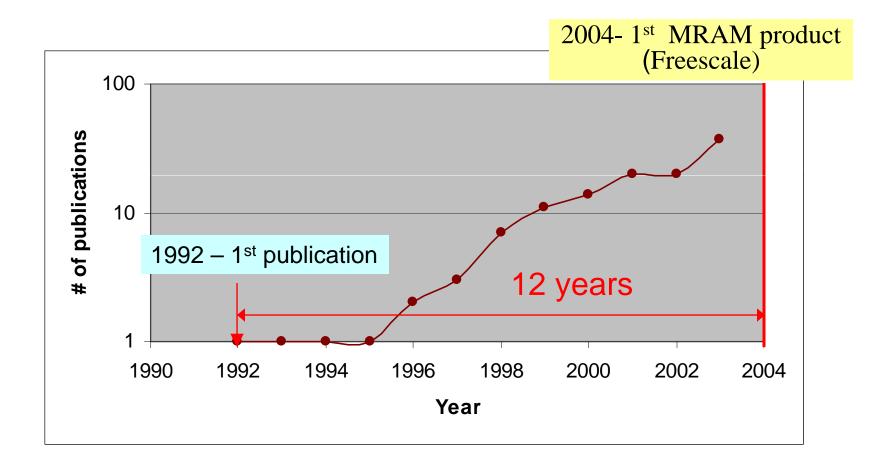




Giant Magnetoresistance (GMR)

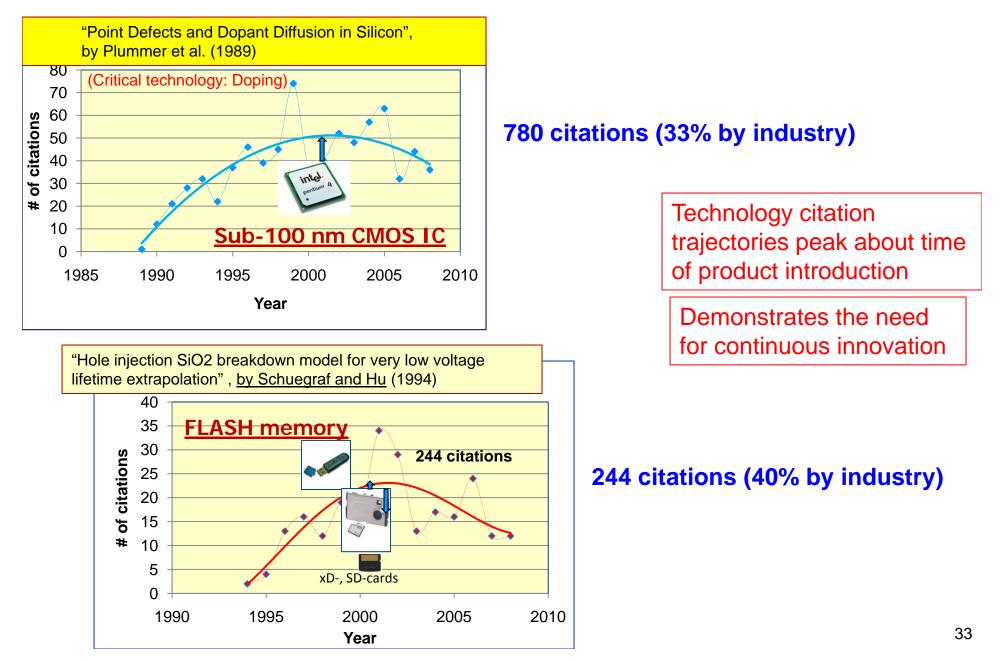


Copper Interconnect

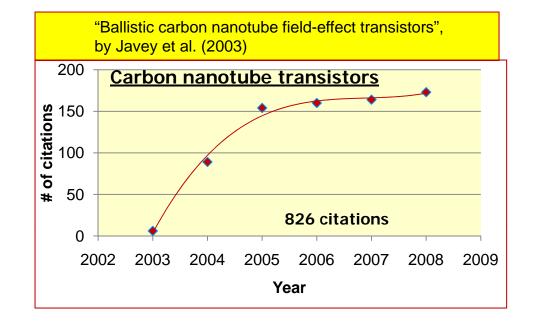


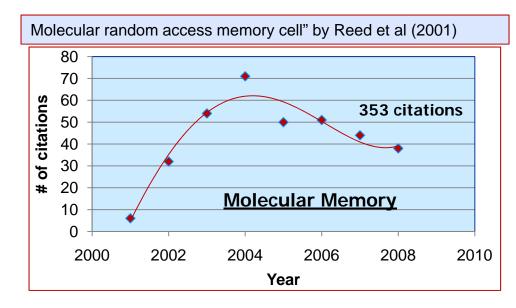
193 nm photoresist

Magnetic RAM



Observation


 A typical latency time from 1st publication to 1st production is about 12 years


What happens 12 years from now? 2009+12=2021 ?

SRC Influential Papers: Citation Trajectories

Citation Trajectories: Emerging Nanotechnologies

Citation Trajectories are an indication of perceived opportunities

The Case for Research Collaboration in Memory Technologies

- Memory research is fragmented and often lacking critical mass
- The limits for scaling/extension of several classical memory technologies is foreseeable
- CMOS embeddable memory technologies are needed
- Energy consumption from memory operations is becoming a significant fraction of system energy usage
- Processing technologies for extremely scaled memory systems are limiting progress; e.g., lithography
- Novel and more efficient memory systems are needed to support emerging applications; e.g. machine learning

How Might We Collaborate?

We think that the SRC model would work

- Needs statements by industry partners
- Fees from member sponsors and from governments
- Research in university laboratories/institutes
- Formal program reviews on periodic basis
- Proof-of-concept in selected facilities?
- SRC has developed the Topical Research Collaboration (TRC) model to implement targeted programs, e.g.:
 - (existing) Energy, Nanotechnology
 - (projected) bioelectronics, memory etc.

Thank you