Low Power Crossbar MRAM with Scalability

Jimmy Zhu, ABB Professor of Engineering

Singapore Memory Forum

Carnegie Mellon

The Crossbar Design

Present STT Driven MRAM

Carnegie Mellon 3

Jimmy Zhu

FeRh: AF to F Transition

FeRh Magnetization vs. Temperature

S. Chikazumi, Physics of Ferroagetism, Oxford Science Publications, 2nd Ed., 190.

Carnegie Mellon

4

Jimmy Zhu

Operating Mechanism

A temperature controlled switch for magnetic coupling!

Carnegie Mellon 5

Jimmy Zhu

Jimmy Zhu

Jimmy Zhu

Jimmy Zhu

Writing Scheme

Write energy/bit: 0.01pJ

The Crossbar Design

0.5

Ω

-0.5

-1 -1

Jimmy Zhu

0

-0.5

Density Estimation

- True 4F² memory cell
- Zero transistor per cell
- Memory element should be stable even below 10nm

At 10 nm element size:

Area Density > 1.5 Tbits/in²

Enabling Tbits Chip Memory Device !!!

Jimmy Zhu

Jimmy Zhu

Concept

Two exchange coupled grains with orthogonally oriented easy axes:

 \boldsymbol{H}

Energy Consideration:

 $E = K \sin^2 \theta + K \sin^2 (90^\circ - \theta) + 2MH \cos \theta$ $= K \sin^2 \theta + K \cos^2 \theta + 2MH \cos \theta$ $= K + 2MH \cos \theta$

Switching Field Threshold :

 $H_s = 0$

Energy Barrier for State Retention:

 $\varepsilon_b = 0$

Carnegie Mellon 14

Jimmy Zhu

Operation Mechanism 1.0 0.5 FeRh H

