My (Optimistic) 3 Cents to Flash Scaling

Electrostatics, Resonant Tunneling and Planar Stacks

Edwin C. Kan Electrical and Computer Engineering Cornell University October 17, 2009

Flash Memory Scaling Challenges

Material Choices for Flash Memory

3D Electrostatics in the Nanoscale: Use of metal, self-assembled 3D shape and pores

C. Lee, et al, IEEE Elec. Dev. Lett. 26 (2005) 879.

Material and Geometry in Nanoscale

Metal NC vs. Semi NC

- Discrete storage (nanocrystals or traps), should be the highest k to have electric fields point toward it.
- If the dielectric has higher k, then electric field diverge away.
- The tunnel oxide needs to have lower k than control oxide for channel-injection operations.
- 3D electrostatics is a must inclusion for the device design.

T-H. Hou, et al, IEEE Trans. Elec. Dev. 3095 (2006).

3D Electrostatics: Low-Voltage Operations

 Same tunnel and control oxide
Devices NOT optimized
Just to show electrostatic behavior

C. Lee, et al, *IEEE Elec. Dev. Lett.*, 26, 879 (2005).

Optimal Electrostatics for Flash Memory

Dimension: Control gate > control oxide > storage > channel > tunnel oxide (*Carbon nanotubes not manufacturable yet...*)
Dielectric constant: Storage > dielectric > channel

U. Ganguly, et al, Appl. Phys. 87 (2005) 043108

Molecule-Enabled Resonant Tunneling Barrier

Resonant tunneling through C_{60} significantly increase $t_{retention}/t_{P/E}$

T.-H. Hou, et al, Appl. Phys. Lett., 92 (2008), 153109

Redox States of C₆₀ in Gate Stack

□ CMOS flash memory to operate the charge state of a molecule (≅ 1nm)

3D Stacks of UTB Ge TFT Flash

Bulk thermal SiO_2 substrate CMP 13nm in-situ doped Ge ALD AI_2O_3 tunnel oxide Self Assebled Au NC ALD (Ti,Dy)O control oxide

J. Lee, et al, MRS 2009 (tbp).

3D Stacks of UTB Ge TFT Flash – Low voltage design: $\pm 5V$ and $3\mu A I_{ON}$

P/E Memory Window

Retention Characteristics

Summary

- 3 possible principles to further enable voltage and density scaling
 - Electrostatics from self-assembled materials (nanocrystals, pores, etc.)
 - Specifically designed tunnel barriers (resonant tunneling, molecular orbitals, etc.)
 - Planar 3D stacks of UTB CMP Ge channels
- There is still much room at the bottom even for flash memory.
- If physically possible and material-wise feasible, engineers can always make it work.