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Floating Gate NAND Device 101 Floating Gate NAND Device 101 
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Gate Coupling Ratio (GCR)
= C(CG to FG) / C(FG total)
Must be > 0 60

1. Program by FN electron tunnelingSource
Oxide

Drain

Must be > 0.60
V(FG) = (GCR).Vg

(Want most of the gate voltage drop across 
th t l id t th ONO )
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Erase by –FN
the tunnel oxide, not across the ONO.)



Physical Limit for Floating Gate NANDPhysical Limit for Floating Gate NAND
IPD (Inter Poly Dielectrics)

Not a physics limit.
Control Gate

X
A physical (geometrical) limit.

FG

STISi

Device doesn’t work w/o GCR.

 Charge trapping device (planar)

1. FG must be tall 
enough to give good 

Si  Charge trapping device (planar).

or
GCR.

2. At < 20nm node, 
there is no space (X 

0) l ft f t l

 Planar FG, resonant tunneling,  
or nano-crystal device with 
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< 0) left for control 
gate after IPD filling.

y
high-K/metal-gate



SONOS Has It’s Own Problems

SONOS device: 
Electrons are trapped in SiN. 
De trapping is very slow 

- 18V

Poly Si Gate De-trapping is very slow. 
Must use hole tunneling to 
erase (hard).

Poly-Si Gate

SiO2

Hole tunneling needs very thin 
tunnel oxide.SiO2

SiN

+



        
Thin oxide cannot stop direct 
tunneling  poor retention.Source DrainP-well

n+n+         

SONOS is known for many years. 

There is no “right” thickness of tunnel oxide that 
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g
can satisfy both erase and retention requirements.



One Solution: Barrier Engineering  BE-SONOS

BE-SONOS SONOS

 SiO2 IPD      

P-Poly Gate

SiO2

P-Poly gate  n-Poly gate N-Poly Gate

SiO2

 SiN trapping layer  

Bandgap EngineeredSiO

SiN
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SiN 

Bandgap Engineered 
tunnel dielectric
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Source DrainP-well

n+n+         

        

Difference between BE-SONOS and SONOS: 
 Composite ONO tunneling barrier allows both fast hole erasing 

d d d t t ti

Source DrainP-well
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and good data retention 
 P-poly gate to reduce gate injection



Gate

O3

BE-SONOSBarrier Engineering of 
Tunnel Oxide
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O2 Modulated 

SONOS  BE-SONOS
Modulated tunneling barrier

Band Diagram at RetentionB d Di t Hi h El t i Fi ld

Source DrainP-well
n+n+ O1Modulated tunneling barrier 

Achieves both erase and retention

Band Diagram at Retention
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1x nm Nodes: Running out of Electrons
Th lti t li li it f b th FG d CT i th

ElectronNumber (Ne) CalculationElectron number of FG

The ultimate scaling limit for both FG and CT is the 
small number of storage electrons.

Electron Number (Ne) Calculation
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in FG device in SONOS device 
(~ 15 for 10nm device)          ( ~ 10 for 10nm device)



Running out of Electrons
ElectronNumber (Ne) Calculation Retention of Sub-30 nm BE-SONOS NAND ISPP Programming StatisticsElectron Number (Ne) Calculation
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For CT devices retention is still good even when Ne < 50

in SONOS device BE-SONOS @ 150C Identical pulse
(~ 50 for 25nm device)           (Quite good !) gives different Vt

For CT devices, retention is still good even when Ne < 50.

Programming shots, however, have < 10 electrons.
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 Statistical limit for MLC first, eventually for SLC.



Beyond 1x nm Node – 3D Arrays

Surround gate 
device is suitable 
for 3D layerfor 3D layer 
stacking 
integration.
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BE-SONOS TFT device shows very 
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Both geometrical and physics limits 
still exist. But 3D layering uses large 
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(40nm) devices.



Summary

 Floating gate NAND Flash faces physical (geometrical) 
limit at ~ 20nm node.

 Charge trapping device can go further (being planar)

 Number of electrons decreases rapidly with node even Number of electrons decreases rapidly with node, even 
CT devices face statistical limit at 10nm node.

 Only known solution is 3D layering.O y o so ut o s 3 aye g

 3D does not solve physics and physical limitations. 3D 
by-passes these limits by using relatively large devices 
(~ 40nm).

 There is no perspective of using FG device for 3D. 
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Must be CT devices.


