NV-Memory Elements with Gate-All-Around Transistors

Patrick Lo Guo-Qiang

Institute of Microelectronics, A*STAR, Singapore

SRC/NSF/A*STAR Memory Forum, Oct. 20-21, 2009

Motivation

- Si-Nanowire/-Pillar Platform Application
- Channel Control, Density, Performance
- Integration Feasibility
- Examples of NV-Memory Devices

Nanowire/Pillar Technology Platform & Applications

Low-Power Logic & High-

CMOS Devices Beyond 22nm

Vertical SGT, A new paradigm

Biosensor Array with µ-fluidic channels

Integrated Energy Harvesting & Storage

Area

100 0 5 x(um) 15 15 0 5 y(um)

Integrated OEIC Sensor Array

Gate-All-Around: a Candidate for Sub-22 nm Nodes

Electrostatics Analysis at $L_G = 10 \text{ nm}$ (EOT= 2 nm)

Only GAA nanowire fulfills the requirement of gate electrostatics with the condition that channel dimension $\leq L_G (L_G/T_{Si} \sim 1)$.

Devices can be scaled to sub-10 nm technology nodes!

Effective Scaling of Gate Dielectric

- T_{ox|Electrical} can be <T_{ox|Physical};
- Reduction in EOT is possible by thinning the Si-body dimension.

) a c

High E-Field in Tunnel Layer

(Collaboration: UOB)

Field Enhancement is achieved with Nano-Structure

More Fundamental Limitation and Implication

FUNDAMENTAL BENEFIT with VERTICAL SCHEME: F: Feature size

- Device area: Shrunk by ~50% from Planar If consider n- and p-MOSFET together for circuit,
- Circuit area: Shrunk by >70%
- Speed: Improve by ~6.1x faster
- Power: Reduce by ~3.3x lower

High-Performance & High-Density NVM

Vertical Multi-Cell Integration on

[Vertically Stacked Cells]

[Gate-All-Around; nm-scale wire]

Performance via Nano-Structure

NV-Memory Device Performance (Horizontal)

Si-Nano-Crystals on Si₃N₄: 7.5 ×10⁹ cm⁻²

Wire Diameter Impact

Field can be simply increased with narrower-diameter to Improve the P/E performance

Impact of High-к Storage

Vertical Pillar based SONOS NVM

Objective:

- Develop scalable high-density and high performance memory devices

Approaches:

- Multi-cells implementation on single Pillar Vertically
- P/E field-enhancement via Surrounded Gate on nano-pillar

Multi-bit Programmable SONOS NVM on Pillar

- P/E speed Improvement with reduced diameter (50 \rightarrow 20nm),
- Well distributed Programming V_t: 2-bit storage/Cell Possible,
- Good retention and Endurance.