SRC/NSF/A*STAR Forum on 2020 Semiconductor Memory Strategies 20-21 October 2009

Performance Projections for Nanomechanical Memory

Shunri ODA

Quantum Nanoelectronics Research Center Tokyo Institute of Technology and SORST JST

Collaborators: T. Nagami, H. MIZUTA*, Y. TSUCHIYA*

Tokyo Institute of Technology , University of Southampton*

TOKYO INSTITUTE OF TECHNOLOGY

CNT based NEMS mamory

Rueckes et al, Science 2000

Si-based bistable FG nonvolatile NEMS memory

J. Appl. Phys. 100, 094306 (2006), IEEE T-ED 54, 1132 (2007)

NEMS memory: Operation principle

Test beam structure fabrication

Fabrication of FG with SiNDs

Fabrication of FG with SiNDs

FG charge initialization

Fabrication of FG with SiNDs

2D simulation of NEMS memory

Steady state analysis of NEMS memory

Floating gate can be switched by applying gate voltage. Drain current changes by position of floating gate.

Simulated structures

Beam displacement and drain current characteristics

Memory property changes by scaling

Switching voltage decreases with size reduction. Current ratio is maintained $10^{5} \sim 10^{6}$ until L = 100 nm.

Transient response and switching time

Estimation of energy consumption

Estimating energy consumption from total energy

$$E_{sum} = E_m + E_k + E_d + E_e + E_R$$

Mechanical energy

$$E_m = \int_V \frac{1}{2} \varepsilon \cdot \sigma dV = W \times \int_S \frac{1}{2} \varepsilon \cdot \sigma dS$$

 $\sigma : \text{stress} \ \epsilon : \text{strain}$

Kinetic energy

$$E_k = \int_V \frac{1}{2} \rho \, \mathbf{v}^2 dV = W \times \int_S \frac{1}{2} \rho \, \mathbf{v}^2 dS$$

Electrostatic energy

$$E_e = \int_V \frac{1}{2} \mathbf{E} \cdot \mathbf{D} dV = W \times \int_S \frac{1}{2} \mathbf{E} \cdot \mathbf{D} dS$$

Damping loss

$$E_{d} = \int_{V} \int_{0}^{t} \mathbf{F}_{d} \cdot \mathbf{v} dt dV$$
$$= W \times \int_{S} \int_{0}^{t} \left(\alpha \rho \, \mathbf{v}^{2} + \beta \, \frac{\partial \sigma}{\partial t} \cdot \frac{\partial \varepsilon}{\partial t} \right) dt dS$$

 α : mass damping factor β : stiffness damping factor

Charging loss

$$E_{R} = E_{e}(t) - E_{e}(0)$$

Switching energy variation by scaling

 V_q 6.7 V step voltage (L = 1 μ m)

Conclusion

- We have performed numerical simulation of NEMS memory devices featuring mechanical bi-stability as a memory node.
- Memory performances enhance with decreasing suspended floating gate length L from 1000nm to 100nm, where switching voltage of 2.5V, switching speed of 15ns, and switching energy of 0.2fJ are projected.
- However, at 50nm, memory window collapses in this device structure. Although not suitable for ultra large scale integration, the fast and ultra low power NEMS memory, which does not require current flow for switching, may find suitable application in mobile terminals.
- Alternative structure, e.g., CNT, may extend scalability.