A-STAR/SRC/NSF Memory Forum – Singapore

Panel VI: Needs and Models for Collaborative Research

Research Priorities/Needs

Gurtej Sandhu Director, Advanced Technology Development

© 2009 Micron Technologies, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

November 09

Company Confidential © 2009 Micron Technology, Inc. 1

Panel VI: Needs and Models for Collaborative Research

Background

There are many successful examples of collaborative research by semiconductor industry. What model would work best for the memory industry?

Discussion

Please identify **drivers** for research collaboration in emerging memory technologies

e.g. application landscape

Please identify **barriers** to research collaboration in emerging memory technologies.

What are promising areas for path-finding research in future memory technologies via an interregional industry-government-university collaboration?

What principles should a collaborative model embrace?

How should the research be implemented?

What are the appropriate roles of industry, academia, and government organizations in the conduct of the research?

What mechanisms should be used to develop research goals and to ensure program focus? How can intellectual property rights be shared among research performers/program sponsors?

How can program agility with respect to emerging research opportunities be maintained? For example, can collaborative research be performed without the need to build and own a state-of-the-art fabrication facility?

How can management overhead costs be controlled and minimized?

What mechanisms should be put in place to enable transfer of knowledge and 'know-how' to the sponsors?

How important is the production of highly-trained graduate students in a collaborative memory research program?

Emerging Memory Research Collaboration - Drivers

• Drivers

- End of the roadmap scaling limits for DRAM/Flash
- Applications landscape
 - Socket level chip replacement unlikely
 - Application specific solutions likely to be required
- Market participation is Global
- To many options, too little time (and \$\$)

Alternate Storage Mechanisms

- Moving Atoms
 - PCM, RRAM (Filament, Metal Oxide), FeRAM, CNT, Molecular....
- Moving Spins
 - MRAM, STTRAM, Racetrack...

Emerging Memory Research Collaboration - Barriers

- Barriers
 - Standards
 - Performance metrics and requirements
 - Communication interfaces to CPU
 - Applications specifications
 - ► IP
 - Commodity memory is a low margins business
 - Competitive Landscape
 - Level playing field

Research Priorities/Needs

- Potential benefits from research collaboration
 - Resource/expertise sharing
 - Standardized performance characterization methodology
 - Guide research with consolidated success metrics
- Requirements
 - Fast paced learning
 - Materials screening, device level data at scale of interest
 - Comprehensive approach to address all aspects of memory technology performance

Emerging Memory Technologies

Storage Mechanism	Present Day Baseline Technologies (taken from ITRS 2005 Edition)		Nanowire Memory (C. Zhou)	Single Electron Memory (J. Liu)	Hybrid Memory (Y.Yang & C.Ozkan)	Phase – Change RAM (Y.H.Xie)	Polymer Memory (R.Kaner & Y.Yang)	Molecular Memory (F.Stoddart & W. Goddard)	Spin Memory (K.W. Kim)
			titte				10 <u>T</u> a	Xer	00 00 01 01 01 01
Device Type, Material Used	Standalone DRAM (2005) 80nm node	NOR Flash - (2005) 130nm node	Nanowires; In ₂ O ₃ , Si with redox active molecules	floating gate using CoSi₂/Si hetero- nanocrystals	protein virus nanowires with platinum nanoparticles & quantum dots	GeSbTe templated self- assembled PS- PI block copoly.	polyaniline nanowires with Au nanoparticles	rotaxanes or catenanes	spin state variable using high temp DMS
Read Time	(<15ns)	(14ns)	<80 ns	<80 ns	~1µs	<50ns	~25 ns	~ns	< 10ns
Write Time	(<15ns)	(1 µs)	(~ 30 ns)	(~100 µs)	~1µs	(<50ns)*	~25 ns	∼µs	~1 ns
Retention Time	(64 ms)	>10 years	(600 hours)	10-20 years	(days)	>10 years	(months)	(minutes)	>years
Write/Erase Cycles	infinite	(>100,000)	(> 20,000)	(100,000)	(400)	~ 1011	>100,000 (~4,000)	(<35)	> 100,000
On/Off Ratio	(< 10,000)	(< 10,000)	(~ 10,000)	(~10 ⁴ -10 ⁵)	<10,000 (~ 1000)	>100	(~ 10,000)	(~ 2-11)	unknown
^{Ia]} Scalability cell size in µm²	32nm node 6F ² = 0.0061 (year 2013)	45nm node 10F ² =0.021 (year 2010)	<0.0001µm ² redox molecule	(1μm²) < 0.0011μm²	(0.01µm²) <0.0001µm²	(0.06μm²)* ~0.04μm²	(0.04µm²) <0.0001µm²	(0.0002μm²) <0.0001μm²	<0.0001µm²
Limiting Factor	High-k material	Oxide thickness	assembly variability	dot density fluctuation	variability of metal particle size & density	density-limited by thermal proximity effect	size and fluctuation of metal particles	molecule stability and variability	curie temp of DMS
General Advantages	High Density, Economy	Non-volatile	low cost, flexible, High density	high density, CMOS compatible	low cost, high density, bio compatible	non-volatile, stable, scalable	low cost, high density, fast	ultra high density	high density, low power, scalable
Challenges	scaling, gate leakage, capacitor formation	scaling, oxide thickness, power dissipation	integration and material stability	dot density fluctuation, scaling	material stability integration, scaling	large write current, new materials and process	material stability, integration, temp influence	speed, stability, on/off ratio, temp influence	material, high curie temp
Fabrication Technique	Lithography	Lithography	lithography and self-assembly	lithography and self-assembly	self-assembly, wet synthesis	templated and lithography	self assembly, wet synthesis	litho & self- assembly	lithography

Memory Technology Development

8

Memory IC - Ecosystem

