Materials For Future Memories

Prof. Tseng, Tseung-Yuen

2009/10/20

Department of Electronics Engineering and Institute of Electronics , National Chiao Tung University, Hsinchu 300, Taiwan

Outline

Emerging memories introduction

> Materials for Ferroelectric random access memory

- Capacitor-type FRAM
- Ferroelectric gate FRAM
- > Materials for Resistive random access memory
- > Summary

Introduction An ideal nonvolatile memory

- An ideal nonvolatile memory
 - Low operation voltage, low power consumption, high endurance, long retention time, nondestructive readout, simple structure, low cost, etc
- Possible candidates of next-generation nonvolatile memory
 - Ferroelectric random access memory (FeRAM)
 - Magnetroresistive random access memory (MRAM)
 - Phase change random access memory (PCM)
 - Resistive random access memory (RRAM)

Comparisons

Function	DRAM	SRAM	Flash	OUM	MRAM	RRAM
Non-volatility	No	No	Yes	Yes	Yes	Yes
Program power	Low	Low	High	Low	High	Low
Program voltage	Lo1	Lo1	High		Medium	Low
Read dynamic margin	100- 200mV	100- 200mV	Delta Current	10X – 100X	20 – 40%	10X – 1000X
Write - Erase time	50ns - 50ns	8ns - 8ns	1µs – 1-100ms	10ns - 50ns	30ns - 30ns	10ns - 30ns
Read time	50ns	8ns	50ns	20ns	30ns	20ns
Program energy	Medium	High	High	Low	Medium	Low
Multi-bit storage	No	No	Yes	Yes	No	Yes
Scalability limits	Capacitor	6T	T-Ox/HV	Litho	Current	Litho
Endurance	~	8	10 ¹²	>10 ¹²	?10 ¹⁵	?10 ¹⁵
Cell size (F ²)	6-12	50-80	7-11	5-8	?	4

2002 IEDM Zhuang et.al. Sharp

Typical or estimated parameter values for a variety of memory technology

Feature	DRAM	SRAM (6T)	FeRAM	Flash	MRAM	PRAM	RRAM
Cell elements	1T1 <u>C</u>	6T	1T <u>1C</u>	1T	ітімтј	1TIR	1TIR
Density	High	Low	Medium	High	High	High	High
Nonvolatile	No	No	Yes	Yes	Yes	Yes	Yes
Endurance R/W	Good	Good	Moderate	Poor	Good	Good	Moderate
Nondestructive read	No	Partial	No	Yes	Yes	Yes	Yes
Direct overwrite	Yes	Yes	Yes	No	Yes	Yes	Yes
White	Moderate	Fast	Moderate	Slow	Fast	Fast	Slow
Read access	Moderate	Fast	Moderate	Moderate	Fast	Fast	Moderate
Erase	Moderate	Fast	Moderate	Slow	Fast	Moderate	Slow
Transistor performance	Low	High	High	High voltage	High	High	High
Scalibility limits	Capacitor	6 Transistors	Capacitor	Tunnel oxide/Power	Current density	Lithography	Lithography

Chapter 5, Handbook of Nanoceramics and Their Based Nanodevices, Vol.4,2009

Parameter	Flash (production)	Ferroelectric RAM	Magnetoresistive RAM	Ovonic Unified Memory
Largest array built, Mb ^a	256	64	des side la march	4
Cell size factor ^b	8-10	18	10-20	5-8
Endurance, cycles	10 ⁶	1016	1014	10 ¹²
Read/write voltages, V	2/12	1.5/1.5	3.3/3.3	0.4/1
Read/write speeds, ns	20/1000	40/40	50/50	50/50
Extra mask steps needed to embed memory	6-8	hitt and t	4	3-4
In production	Yes	Yes	2004	N.A.
Some major players	 AMD • Intel Semiconductor Storage Technology Sharp • Toshiba STMicroelectronics 	 Fujitsu Ramtron Samsung Texas Instruments 	• IBM • Infineon • Motorola • NEC • Toshiba	BAE Intel Ovonyx STMicroelectronics

IEEE Spectrum, March 2003,pp.49-54

Ferroelectric random access memory (FeRAM)

Layered Perovskite Smith, Ferroelectrics,2009

Prof. Tseng, Tseung-Yuen

bitline INNNNNNNNNN ******************* MMplu WL WL g WL WL drain drain source a) stacked cell b) offset cell a b Al W-Plug W-Plug Pt2 Pt2 W-Plug SBT SBT Pt1 Pt1 Oxygen Barrier **Poly Plug** 999nm 944812 10.0kv ×30.0k

Capacitor type ferroelectric random access memory(FeRAMs)

Mikolajick et.al., Microelectronics Reliability,41(2007)947.

32 Mb Samsung PZT FeRAM

J.F. Scott, Science, Vol.315,954, Feb. 2007

SEM image of embedded FRAM(64 Mb 1T/1C, TI)

Cross-section schematic diagram(IEEE J. Solid State Circuits, April 2004)

Technology	130 nm, 5LM, Cu/FSG
Organization	2M Words x 32 bits
64Mb Macro Size	56.5 mm ²
Memory Density	1.13 Mb/mm ²
Array Efficiency	64%
Cell Size	0.54 μm ²
Capacitor Size	0.25 μm²
Cell Type	1TIC, CUB
Architecture	Folded, Twisted Bit-Line
Access / Cycle Time	30 ns / 35 ns
Operating Voltage	1.3 V

64-Mb EFRAM DEVICE FEATURES

IEEE J. Solid State Circuits, April 2004

64 Mb, 1T1C FRAM, Samsung

	Density	16 I/O x 4Mb			
	Voltage	1.8V			
	tAA	70ns			
Device	tRC	100ns			
Device	ISB CMOS	<20uA			
	Cell Size	0.34um ²			
	Cap. Size	0.16um ²			
	D/R	150nm			
	Logic	Dual gate oxide process			
Process	Interconnect	W(DC, BC, MC, Via 1)			
	Metallization	3 levels (W, Al1, Al2)			
	Capacitor	Ir/SRO/PZT/Ir/TiAlN			

2006 IEDM Samsung

Issues for materials development and Integration

J.Electrochem.Soc.,151, 2004

Forming gas annealing effect

Han and Ma, Appl. Phys. Lett.,71(9),1267,1997

Issue for FeRAMs

Limiting factor for scaling: minimum 2D capacitor area

Solutions

3D ferroelectric capacitor structures Conformal coverge of 3-D electrode with ferroelectric has to be uniform in thickness but should also exhibit uniform properties

Ferroelectric materials with a higher Pr

PZT with high P_r

PZT/SrRuO₃/Ru/SiO₂/Si

Wang et.al. NCTU, Appl. Phys. Lett., 80(20), 3790, 2002

Ferroelectric Gate Field-Effect Transistors(FETs)

Ferroelectric is in direct contact with the drain-source channel of the transistor resistive storage readout device(non-destructive)

H. Ishiwara et.al., MRS Bull., 823, 2004

Operation principle of Ferroelectric Gate FET

(a) OFF state (Logic 0)

After writing at $-V_w$ the polarization is stored in the ferroelectric. The electric field cause accumulation of holes, Therefore the threshold voltage V_{th} is larger.

(b) ON state (Logic 1)

After writing at $+V_w$ The polarization is stored in the ferroelectric. The electric field cause inversion of electrons, Therefore the threshold voltage V_{th} is lower.

Lue & Tseng. NCTU

Short achieveable retention time

Reported Data Retention Time for Various Ferroelectric Gate Field-Effect Transistors.								
Structure	Material	Area Ratio (MFM:MIS)	Data Retention Time	Year				
	Pt/Sr ₂ (Ta,Nb) ₂ O ₇ /Pt/IrO ₂ /poly-Si/SiO ₂ /Si	1:3.12	14 days (capacitor)	1999				
MFMIS	Pt/SBT/Pt/SrTa₂O₅/SiON/Si	1:5.9	2 days	1999				
Pt/Pb ₅ Ge ₃ C	Pt/Pb ₅ Ge ₃ O ₁₁ /Ir/poly-Si/SiO ₂ /Si	1:1	4 days	2002				
	Pt/SBT/Si₃N₄/Si	1:1	3 days	2002				
MEIO	Pt/SBT/Si₃N₄/SiO₂/Si	1:1	0.5 days	2002				
MEIS	Pt/SBT/HfAIO/Si	1:1	12 days	2004				
	Pt/SBT/HfO ₂ /Si	1:1	30 days	2004				

MFM – metal-ferroelectric-metal.

MIS - metal-insulator-semiconductor.

MFMIS - metal-ferroelectric-metal-insulator-semiconductor.

MFIS - metal-ferroelectric-insulator-semiconductor.

H. Ishiwara et.al., MRS Bull., 823, 2004

Issues for ferroelectric gate FETs

Ferroelectric Si interface reaction during fabrication leading to create defects at the interface. Interface traps can capture and or emit charge carriers and affect the operation of the device.

Solutions

Insulating buffer layers inserted between ferroelectric film and Si.

The insulating layer must fulfill the following requirements:

•Form a good interface with silicon.

•Have a strong barrier property against interdiffusion.

•Have a high dielectric constant to realize low operating voltage and long retention time.

•Keep low leakage currents through the device.

•Enhance the crystallization of the ferroelectric film.

•Remain smoothness during the fabrication process.

•Maintain stable at processing temperature.

Materials used as the buffer layer

 $SiO_2 Si_3N_4 SiON CeO_2 ZrO_2 MgO Al_2O_3 SrTiO_3 Y_2O_3 PrO_x LaAlO_3 La_2O_3 Ta_2O_5 HfO_2 SrTa_2O_6 YMnO_3 Bi_2SiO_5$

Resistive random access memory (RRAM)

Bipolar resistive switching

RRAM switching mechanisms

> Filamentary

S.Lai et al., IEDM (2001)

Interface controlled

M. Kund et al., IEDM (2005)

Formation/Rupture of conduction path

Structure of RRAM

One Diode and One Resistor (1D1R)

- Avoiding the misread problem ۲
- Minimum cell size of $4F^2$ ۲
- Diode fabricated in the front-end, and the resistor fabricated in the back-end • of CMOS process

Structure of RRAM

One transistor and one resistor (1T1R)

- Minimum cell size of 6F² (common source)
- Transistor fabricated in the front-end, and the resistor fabricated in the back-end of CMOS process

2004 IEDM Baek et al. Samsung

2007 VLSI-DT Ho et al. **MXIC**

Materials for RRAM

Thin Film Technologies	Insulating Materials
(RF) magnetron sputter	Al ₂ O ₃ , SrZrO ₃ , Cr:SrZrO ₃ , V: SrZrO ₃ , ZrO ₂ ,
	CeO_2 , TiO_2 , CuO_2 , SiO_2 , $Cr:SrTiO_3$,
	La _{0.7} Ca _{0.3} MnO ₃ , <u>Eu_xO_x</u>
(RF) reactive magnetron sputter	$\underbrace{NiO}_{2}, \operatorname{TiO}_{2}, \operatorname{ZrO}_{2}, \operatorname{Cu}_{2}O, \underbrace{CuC}_{2}O, \underbrace{CuC}_$
(DC) magnetron sputter	NIO
(DC) reactive magnetron sputter	NiO, TiO₂
Reactive magnetron sputter	TiO ₂ , MnO _x , ZnO, La _{0.7} Ca _{0.3} MnO ₃
PLD	NiO, TiO₂, HfO₂, Cu₂S, (BaSr)(ZrTi)O,
	SrRuO3, YBa2Cu3O6+x, Ba0.7Sr0.3TiO3,
	SrTiO ₃ , <u>SrTiO_x, Cr:SrZrO₃,</u>
	La _{0.67} Ca _{0.33} MnO ₃ , La _{0.7} Ca _{0.3} MnO ₃ ,
	La _{0.7} Ca _{0.3} MnO ₃ , Pr _{0.7} Ca _{0.3} MnO ₃ ,
	La _{0.67} Sr _{0.33} MnO ₃ , La _{0.7} Sr _{0.3} MnO ₃ ,
	La _{0.8} Sr _{0.2} MnO ₃
ALD	NIO, HfOx, HfO2
Reactive magnetron sputter	TiO_2 , MnO_X , ZnO , La _{0.7} Ca _{0.3} MnO ₃
PLD	$\underbrace{NiO}_{r}, TiO_{2}, HfO_{2}, Cu_{2}S, (\underline{BaSr})(\underline{ZrTi})O,$
	SrRuO3, YBa2Cu3O6+x, Bao.7Sro.3TiO3,
	SrTiO ₃ , <u>SrTiO_x, Cr:SrZrO₃,</u>
	La _{0.67} Ca _{0.33} MnO ₃ , La _{0.7} Ca _{0.3} MnO ₃ ,
	La _{0.7} Ca _{0.3} MnO ₃ , Pr _{0.7} Ca _{0.3} MnO ₃ ,
	La _{0.67} Sr _{0.33} MnO ₃ , La _{0.7} Sr _{0.3} MnO ₃ ,
	La _{0.8} Sr _{0.2} MnO ₃
ALD	NIO, HfOx, HfO2
Plasma-enhanced ALD	TiO ₂ , TiO ₂ ,
Liquid injection ALD	TiQ _x , La _{0.83} Sr _{0.17} MnO ₃
MOCVD	NIO, ZnO, HfO2
Laser MBE	NiQ heterostructured nanowires
Electron beam evaporation	NO_2 , TiO ₂ , Au:ZrO ₂ , Zr ⁺ : ZrO ₂ , Cu: ZrO ₂ ,
	ZrO2/AU/ZrO2, <u>MnOx</u> , <u>SiOx</u>
Sol-gel	V: SrZrO ₃ , ZrO ₂ , Ag- ZrO ₂ , TiO ₂ , Gd:TiO ₂ ,
	Mg _{0.2} Zn _{0.8} O,
RTA	NIO
Anodic oxidation	TiO ₂
Thermal oxidation	Cu ₂ O, <u>CuxO, FeOx</u>
Plasma oxidation	AlxOx

Prof. Tseng, Tseu:

Electrode Materials for RRAM

- <u></u>	-
Thin Film Technologies	Electrode Materials
(RF) magnetron sputter	Pt, LaNiO₃, Ti, WN, SrRuO₃, ITO, Ţ <u>iN</u>
(DC) magnetron sputter	Pt, Ag, Al, Cu
Reactive magnetron sputter	ŢiŊ, Pt
Electron beam evaporation	Pt, Au, Ti, Ni, Cu, Al
Thermal evaporation	Pt, Au, Ti, Al, Cr, Ag
ALD	TIN
PLD	SrRuO3, YBa2Cu3O7-5, Al-Ag

Zhang & Tseng, NCTU

Factors that influence resistive thin film properties

- Processing methods and parameters
- Film composition and dopant
- Crystalline structure
- > Microstructure
- Surface morphology
- Film thickness
- Electrode materials
- Embedded layer

Effect of ZrO₂ processing temperatures

		DC sweep						
	Forming Voltage (V)	orming oltage (V)		On/Off Ratio at 0.3V	Endurance			
		mA	μA	times	number of testing cycle			
25°C	2.5~4	1.21	33.3	22.8	2200			
100°C	4~5	1.95	11.7	110	900			
150°C	4~5.5	1.64	5.16	66	4000			
200°C	4~5	1.04	4.53	114	10599			
250°C	4~6	1.55	14.3	96	6100			

Prof. Tseng, Tseung-Yuen

Tsai et.al., NCTU

Ti/ZrO₂(200°C)/Pt/Ti/SiO₂/Si

Amorphous phase

Tsai & Tseng, NCTU

Compositional effect

Lin & Tseng, NCTU

Effect of Crystallinity

Prof. Tseng, Tseung-Yuen

Forming voltage, turn-on voltage, and resistance ratio increase with increasing vanadium doping concentration up to 0.2 mol%, but those of 0.2, 0.3 and 0.4 mol% V:SZO films are almost the same.

Vanadium Doping Concentration (mol%)

Prof. Tseng, Tseung-Yuen

HRS currents: Carrier conduction in films dominated by F-P emission

Temperature dependence of HRS currents

Prof. Tseng, Tseung-Yuen

Lin & Tseng et.al. NCTU

Carrier transport of LRS followed by Ohmic conduction

LRS currents increased with increasing measured temperature(hopping conduction)

Plots of F-P emissions fitting of HRS currents. By extrapolation of above measurement data to zero electric field, barrier height of F-P defects obtained

Barrier height of F-P defects

Lin & Tseng et.al. NCTU

What is F-P defects?

Oxygen vacancies or electronic defects

It is important to identify the effect of vanadium doping on oxygen vacancies occurred in order to obtain better understanding of the effect of vanadium doping on the resistive switching characteristics of the devices

Zr site in the lattice substituted by high valence $cation(V^{5+})$ can be expressed as the followings:

$$2V_{2}\mathcal{O}_{5} \xleftarrow{5Z\mathcal{O}_{2}} 4V_{Z^{*}}^{\bullet} + 10 \mathcal{O}_{o}^{\times} + V_{Z^{*}}^{WI}$$

$$Zr\mathcal{O}_{2} + 2\mathcal{O}_{o}^{\times} \leftrightarrow V_{Z^{*}}^{WI} + 4V_{o}^{\bullet} + Zr\mathcal{O}_{2}(surface) + \mathcal{O}_{2}(g), \text{Kschottky} = \left[V_{Z^{*}}^{WI}\right] \left[V_{o}^{\bullet}\right]^{4} P_{\mathcal{O}_{2}}.$$

$$Zr\mathcal{O}_{2} \leftrightarrow V_{Z^{*}}^{WI} + 2V_{o}^{\bullet} + Zr\mathcal{O}_{2}(surface), \text{Kschottky} = \left[V_{Z^{*}}^{WI}\right] \left[V_{o}^{\bullet*}\right]^{2}.$$

$$\mathcal{O}_{o}^{\times} \leftrightarrow \frac{1}{2}\mathcal{O}_{2}(g) + V_{o}^{\bullet} + e^{t}, \text{Kxedox} = \left(P_{\mathcal{O}_{2}}\right)^{\frac{1}{2}} \left[V_{o}^{\bullet}\right] n.$$

$$\mathcal{O}_{o}^{\times} \leftrightarrow \frac{1}{2}\mathcal{O}_{2}(g) + V_{o}^{\bullet*} + 2e^{t}, \text{Kxedox} = \left(P_{\mathcal{O}_{2}}\right)^{\frac{1}{2}} \left[V_{o}^{\bullet*}\right] n^{2}$$

As shown in above Figure, vanadium doped into SZO-based thin films can modulate barrier height of charge carriers which conduction electrons overcome from trapping level(i.e., oxygen vacancies) to conduction band, thereby further affecting resistive switching characteristics of the devices.

Lin & Tseng et.al. NCTU

- (a) Below turn-on voltage, it is field-enhanced thermal excitation of trapped electrons into the conduction band, indicating the conduction electrons hopping through the small amount of deep oxygen vacancies in SZO-based thin films.
- (b) Above turn-on voltage, the charge carriers(i.e., oxygen vacancies) are aligned to form conducting filaments connecting TE and BE with the barrier height in the range of 0.10~0.13 eV, leading to the transition from F-P emission to Ohmic conduction, which is so called thermally excited and electron hopping in the SZO-based films.

Top electrode effect

Resistive Switching of ZrO₂

- Work function of Pt, Ni, Ag, Cu, Al, and Ti: 5.65, 5.15, 4.73, 4.7, 4.3, and 4.3 eV, respectively
- > Non-polar to bipolar resistive switching
- Work function effect neglected
- Oxygen gettering ability dominant

Top-electrode Ti

Binary metal oxides-ZrO₂

Interface layer comprises of TiOx and ZrOy characterized by SIMS and TEM, respectively.

Prof. Tseng, Tseung-Yuen

2007 JAP Lin&Tseng et al. NCTU

Top electrode thickness

Nonpolar resistive switching Endurance test in 5T devices(inset)

Wang & Tseng et.al NCTU 2009

Wang & Tseng et.al APL 2009

Prof. Tseng, Tseung-Yuen

Conducting filament formation and rupture

Wang & Tseng, NCTU, APL 2009

Performance of of the current reported ZrO2-based memory devices

Device structure *	R _{ON}	R _{OFF}	V _{ON}	V _{OFF}	RS cycles	Pulse _{ON}	Pulse _{OFF}	Device yield	Reference
Ti/ZrO ₂ /Pt	150~2k Ω	10k~100k Ω	~0.9V	~1.4V	10000	6V/50ns	3V/50ns	~100%	This work
Pt/ZrO _X /p ⁺ -Si	$\sim 3k\Omega$	43kΩ	~1.6V	~1.1V	80	6V/100ns	2V/100ns	43%	[11-12]
TiN/ZrO ₂ /Pt	300~80 0Ω	4k~80kΩ	0.7~1.1 V	0.5~0.8 V	480	1.5V/1µs	2V/1µs	N.A.	[13]
Au/nc-Au ZrO ₂ /n ⁺ -Si **	5k~166 kΩ	9M~83M Ω	2.6~3.5 V	1~3V	100	N.A.	N.A.	73%	[14]
Cr/Au-implanted ZrO ₂ /n ⁺ -Si	70~30k Ω	2M~300 MΩ	~8V	~2.2V	200	12V/50ns	6V/100ns	~100%	[15]
Cu/Cu-doped ZrO ₂ /Pt	100Ω	100ΜΩ	2.1~3.6 V	0.8~1.5 V	N.A.	N.A.	N.A.	Higher than that undoped	[16]
Cr/Zr ⁺ -implanted ZrO ₂ /n ⁺ -Si	~4kΩ	~200MΩ	~3.2V	~3.1V	N.A.	N.A.	N.A.	Higher than that unimplante d	[17]

Tsai & Tseng, NCTU 2009

Nanocrystals-embedded RRAM

 Due to the higher electric field induced around the embedded nanocrystals within ZrO2, it expected that the localized conducting filaments would pass through the nanocrystals by external electric field driving. The modified intentional defects are believed to be easily altered and created while applying voltage bias on the memory device.

Embedded metal

- 2009 APL Chnag et.al. NTHU
- Enhancement in electric field is in the thickness direction normal to Pt particle. providing easy path to form a fixed conducting filament in thin films. Therefore, fluctuation f switching parameters could be stabilized by the embedded particles.

Prof. Tseng, Tseung-Yuen

Summary

> Ferroelectric materials in the gate and complex metal oxides materials are among the new materials being studied for future nonvolatile memory applications.

➤ The high-k materials with high crystallization temperature and low leakage current are a good candidate of buffer insulating layer in MFIS FETs, which foreshadow further retention time improvements of MFIS FETs.

➢ 3D ferroelectric capacitor structures, ferroelectric materials with a higher Pr, lowering crystallization temperature of ferroelectric films for avoiding the degradation of underlying transistor during annealing, and forming very thin ferroelectric films for realizing low voltage operation are being studied for fabricating high density ferroelectric memory.

Effects of composition, nonstoichiometry, dopants, crystallization, and thickness of resistive switching films; electrode materials; and embedded nanocrystal and metal on the switching characteristics of RRAMs and their conduction mechanisms are being studied for enhancing their performance and reliability.

Thank you for your attention

