Perspectives on ReRAM technologies

IN K. YOO

2009. 10. 26

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

ANTO INTA TA T

- EVOLUTION PATTERNS OF PRODUCTS
- CAN WE FORECAST FUTURE PRODUCTS?
- PERSPECTIVES ON RERAM TECHNOLOGIES
- A SWITCHING MECHANISM IN RERAM
- RESEARCH SUGGESTIONS

Patterns of product evolution

Evolution Tree of information storage 蒹 33

Evolution patterns

- Dynamization
- Mono-Bi-Poly pattern
- Segmentation

1G NAND

- Geometric evolution
- \cdot Substance introduction

⇒ Increase in entropy

scaling down = segmentation

Can we forecast future products?

Ecosystem should be considered in addition to evolution pattern. Product concept and business model are neither induced nor deduced, but created.

Why abduction?

Deduction : Knowledge is limited Induction : The conclusion may be wrong Abduction : Knowledge can be expanded

There are beads in the box on the table. There is a bead on the table.

Thus,

1) The bead might have come out from the box.

2) The bead might have been missed when putting beads in the box.

3) The bead might have been put on the table separately, etc..

Exercise : What is next? 2015, Global Business Network

- 1. Find mega trend (Induction)
- 2. Forecast the final pattern (Abduction)
- 3. Verify the answer (Deduction)

1	1	2	3	3	1	2	3	3
2	3	1	1	3	2	2	1	1
2	3	3	2	2	1	1	3	2
3	1	2	3	1	2	3	1	2
3	1	3	3	2	1	1	3	3
2	2	1	1	3	2	2	1	2
2	3	2	2	1	3			
1	3	1	2	3	2			
3	1	2	3	1	1			

Deductive forecasting memory evolution

Applications:

- One time programmable memory for DRM.
- High capacity ReRAM with switching speed faster than NAND for 3D camera.
- Tunable resistor in analog logic for pattern recognition.

Required innovation:

- p+-i-n type ReRAM materials
- Multi-level ReRAM materials

Switching mechanisms in ReRAMs

Fuse/Anti fuse	Electronic effect	Metal ion motion	Oxygen ion motion	
memory switching	based switching	based switching	based switching	
M Fiament	STR0,dis file	Pt O Cu25 Pt Pt Pt Pt Pt Pt Pt Pt Pt Pt	(d) (d) (e) (c) (c) (c) (c) (c) (c) (c) (c	
Unit and the second sec	$\underbrace{\underbrace{(1)}_{10^{-4}}^{10^{-4}}}_{(1)} \underbrace{\underbrace{(1)}_{10^{-4}}^{10^{-4}}}_{10^{-4}} \underbrace{(1)}_{10^{-4}}^{10^{-4}} \underbrace{(2)}_{10^{-4}}^{10^{-4}} \underbrace{(2)}_{10^{-4}} \underbrace{(2)}_{10^{-4}}^{10^{-4}} \underbrace{(2)}_{10^{-4}}^{10^{-4}} \underbrace{(2)}_$	D) OFF state B) ON state C) RESET B) ON state B) ON state B) ON state C) RESET B) ON state C) RESET	Torming cycle -2 compliance level -cycle n+1 -1 -1 -0.3 -0.2 -0.1 00 0,1 0,2 0; -0.3 -0.2 -0.1 -0 0 0,1 0,2 0; -0.3 -0.2 -0.1 -0 0 0,1 0,2 0; -2 -2 -2 Voltage [V] -2 -2 -2	
 Unipolar switching with diode Excellent retention 	 Excellent uniformity Multilevel 	 Fast P/E speed Low power Multilevel 	 Fast P/E speed Excellent endurance Excellent statistical distribution Low power Multilevel 	
 Need electro forming Poor uniformity 	Poor retentionPoor scalability	 Need low temperature process Poor retention/poor uniformity 	 Poor retention 	

A switching mechanism in ReRAM

A percolation cluster model during resistance switching. The conducting cluster resides on the breakdown surface in the shape of a network. The main body of the cluster may not deform so much during switching. Instead, some spots in a percolating network may contribute to switching by connecting and disconnecting the cluster to the top and bottom electrodes. The cluster size is proportional to the electrode area in such a manner that $M \propto A_b^d = (\rho A \alpha t)^d$

A switching mechanism in RRAM

- P(m): Probability density of either formation or breakage of chain of the conducting percolation cluster.
- *n* : The total possible number of sites that can be involved in connecting clusters to the electrode.
- *p* : Probability of connecting spot formation.
- m: The number of success to form connecting spots in area A.
- s: Site density in area A. a=np=sAp

A switching mechanism in ReRAM

 $M \propto A_b^d = (\rho A \alpha t)^d$

 $M(r) \propto r^D$, where M(r) is the number of points in the sphere of radius *r* with fractal dimension *D* with D < 2. *

 $M(r) \propto A_b^{D/2}$

and it is assumed that

 $m \propto \sqrt{M(r)}$, then $m \propto A_b^{D/4} \propto A^{D/4}$. Since $I \propto m \propto M \propto A^d$, $\ln I \cong d \ln A + \text{constant}$ $\ln J \cong (d-1) \ln A + \text{constant}$, where d = D/4. Thus, d < 0.5

*T. Nakayama and K. Yakubo, Fractal concepts in condensed matter physics, (Springer series in solid-state sciences, 2003).

Research suggestions on ReRAM

- Business model and product concept for ReRAM can be created by evolution patterns.
- Chaos and complexity phenomena should be considered in ReRAM studies.
- Reconfigurable logic may be one of promising areas for ReRAM applications.
- Applications of oxide ReRAM materials can be expanded to transparent oxide electronics including transparent sensors.