Polymer Electronic Memories: Materials, Devices and Mechanisms

Chunxiang Zhu Dept of Electrical and Computer Engineering National University of Singapore

Polymer and Molecular Memories

ROM: Read Only Memory EPROM: Electrically Programmable Read-Only Memory WORM: Write-Once Read-Many-Times Flash: Rewritable EEPROM: Electrically Erasable Programmable Read-Only Memory FeRAM: Ferroelectric Random Access Memory RAM: Random Access Memory DRAM: Dynamic Random Access Memory

SRAM: Static Random Access Memory

Stimuli-Responsive Polymers for Information Storage

Rather than encoding "0" and "1" as the amount of charge stored in a Si cell, a polymer memory stores data in another form, for instance, based on the high and low conductivity response to an applied voltage (electrical bistability)

Multi-layer construction

A. Stikeman, Technol Rev 2002 105 31

Classification of Polymer Memories

Mechanistic Analogy Between the Polymer Memory Elements and the 3 Primary Circuit Elements

Туре	Capacitor-type polymer memories	Transistor-type polymer memories	Resistor-type polymer memories
Physical description	The capacitor stores charges, of opposite sign, on two parallel plate electrodes, indicating the bit level. Each bit of data is stored in a separate capacitor.	Charge storage and polarization in the dielectric layer or interfaces of an organic field effect transistor, indicating the bit level of an OFET memory.	Data storage is based on the high and low conductivity states (electrical bistability) of resistor in response to the applied electric field.
Device structure	 (a) 1 Transistor + 1 Capacitor (1T1C) (b) 1 Transistor + 2 Capacitor (1T2C) (c) 2 Transistor + 2 Capacitor (2T2C) Ferroelectric polymers: 	 (a) Floating gate OFET (b) Charge trapping OFET (c) Ferroelectric OFET (a) Semiconductor materials: 	 (a) Metal-Insulator-Metal (MIM) (b) Cross-point array memory (c) 3D (three-dimensional) stacking (a) Insulating polymers
Polymer materials	 (a) PVDF or P(VDF-TrFE) (b) Odd nylons (c) Cyanopolymers (d) Polyureas and polythioureas (e) FLC polymers 	 π-Conjugated molecules and polymers. (b) Gate insulator (electrets): Inorganic insulators, discrete metal nanoparticles, polymer dielectrics, ferroelectric polymers 	 (b) Isolated chromophores, donors and acceptors (c) Semiconducting polymers (d) Composite materials
Mechanism	Ferroelectric polymer can maintain permanent electric polarization that can be repeatedly switched between two stable states by an external electric field.	Charge storage or polarization in OFET gives rise to an additional voltage between the gate and the semiconductor channel, and a shift of $V_{\rm th}$ or hysteresis.	Electrical bistability can be induced by (a) a change in carrier concentration, (b) a change in charge mobility, and (c) a change in both.
Performance factors	Polymer composition, crystallinity, film thickness, switching dynamics, film defects, metal electrodes, field pulses, fatigue characteristics	Charge mobility, capacitance per area, maximum electric displacement, impurity, morphology, crystal packing, energy barrier, deposition conditions	Filamentary conduction, space charges and traps, charge transfer (CT) effects, tunnelling, conformation changes, polymer fuse effects, ionic conductions
Technical Limitations	(a) Destructive read-out(b) Material degradation(c) Capacitor scaling	(a) Thickness control of dielectric layer(b) Parasitic capacitance(c) Charge coupling	(a) Mechanisms unascertained(b) Reproducibility(c) Parasitic leakage current

Data Storage Based on Electrical Bistability (ON- and OFF-states) of Materials Arising from Changes in Intrinsic Properties, e.g., CT, Phase/Conformation Change and Redox, in Response to the Applied Electric Field (not based on a specific cell structure, e.g., FET, or Si CMOS technology)

> Polymeric material serving as a fuse: -Write a bit with high current (blow the fuse) -Read a bit with low current (check to see if the fuse is blown) -Rewritable memories use reversible fuse states

General Device Structures

- (a) 5 × 5 testing polymer devices and the basic configuration of a memory cell,
- (b) a 5 (Word line) × 5 (Bit line) cross-point memory array,
- (c) a 2 (Stacked layer) × 5 (Word line) × 5 (Bit line) stacked memory device,
- (d) parasitic paths in cross-point memories, and
- (e) rectifying diode integrated to avoid parasitic currents.

Evaluation parameters for molecular/polymer memories

- (a) Stability under voltage stress and ON/OFF ratio (inset) [PVK-C₆₀, Langmuir 2007 23 312]
- (b) Thermal stress and number of read pulses [Conjugated triad, Appl Phys Lett 2008 92 143302]
- (c) Write-read-erase-read (WRER) cycles [PANi nf-Au np, Y Yang et al. Nano Lett 2005 5 1077]
- (d) Switching time measurement [PVK-Eu copolymer, Adv Mater 2005 17 455].

RRAM from Filamentary Conduction

RRAM from Space Charges and Traps Poly(*N*-vinylcarbazole)-Carbon Nanotube Composite Films

TABLE 1. Effective Distance between Neighboring CNTs in the PVK-CNT Composite Films and the Corresponding Device Behavior (Diameter of CNT = 15 nm)

CNT content (weight percentage)	effective distance (nm)	device type
0.2%	150	insulator
1%	30	WORM memory
2%	15	rewritable memory
3%	10	conductor

ACS NANO 2009 3 1929

RRAM from Space Charges and Traps

RRAM from Conformation Change Effects

A J Pal et al. Appl Phys Lett 2004 84 999

RRAM from Conformation Change Effects

RRAM from Charge Transfer (CT) Effects

RRAM from Charge Transfer (CT) Effects

RRAM from Charge Transfer (CT) Effects Static Random Access Memory (SRAM)

Properties	Ground State	Excited State
Dipole Moment	2.82 Debye	3.06 Debye
ESP Surface		
Optimized Geometry	$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ $	α α β β β
Dihedral Angle	$\theta_1 = 40.1^\circ, \ \theta_2 = 67.1^\circ$	$\theta_1 = 54.6^{\circ}, \ \theta_2 = 72.7^{\circ}$

Chem Mater 2009 21 3391

RRAM from Polymer Fuse Effects

The working mechanism relies on irreversible reduction of the electrical conductivity by Joule heating like electrical safety fuses.

The WORM memory pixel exploits a mechanism of currentcontrolled, thermally activated un-doping of a two-component electrochromic conducting polymer (PEDOT)

The ratio of PEDT+ to PSS- near the interface changes due to phase segregation in the presence of the applied high field, leading to a decrease in film conductivity by 6 orders

RRAM from Ionic Conductions

The conductance switching is attributed to the injection/depletion of iodide dopant ions in the MEH-PPV layer by the applied electric field

F Wudl et al. Appl Phys Lett 2006 88 133515

The electronic levels are created by ionization of carboxyl groups. Cations are separated but not completely removed from the system. The conductive channel is formed by a chain of COO- anions. An electric field of opposite polarity, which forces cations back, facilitates the recombination of the ionized centres in the conducting channel

N B Zhitenev Nat Nanotechnol 2007 2 237

(a) probe polyimide LB film Au electrode mica substrate (b) 10-7 ₹ 10-* current 10-" 10-1 10-1 6 monolayers 10-12 2 3 0 1 voltage (V)

Memory Switching in LB Film with STM

K Takimoto Appl Phys Lett 1992 61 3032

RRAM from Tunneling Effects

NDR in MEH-PPV Tunnel Diode

WORM memory with rectifying property

Thank you!