

Tim Harris, Janelia Farm Integrated Optical & Electrical Neurophysiology Probes

Application

- Driver: Sensing and controlling activity of neurons in awake freely moving research mice.
- Selective control of neuron activation has only recently been achieved, using light to trigger transformed neurons
- Market Size: 250-500 research groups world wide, ~\$50-150K per group per year annual spending in the area. Some long term overlap with human clinical brain implants.
- Need: Controlling and monitoring activity of individual neurons in genetically modified mice. Selected neurons are made optically sensitive so that neuron firing can be induced with light.

Advantages

- Current fiber coupled devices cause considerable animal perturbation. Wireless (battery powered) or thin flexible powered devices would be much preferred.
- Flexibly programmed optical excitation and electrical detection with minimal perturbation of animal behavior.
- Flexible modular design and fabrication platform

Research Needs

Scientific/technological problems and barriers:

- 5-10 mm long low loss (0.5 dB) multimode optical waveguides integrated onto ~20 um thick, 60 um wide probes, to be inserted into the brain of mice
- Waveguide coupled emitters mounted just above the animal scull, 470 and 570 nm sources, selectable, 10 mW (CW or pseudo CW) coupled power
- 32-64 5-10 um diameter metal sites integrated into this same device, with conductors into the head mounted amplifiers

Metric(s) of Progress

Year 1

Low loss polymer planar waveguide fabrication Low loss coupling of an integrated emitter

Year 2

Switchable emitter color at coupling Switchable emission site on probe

Year 3 project completion Integration of multicolor sources with electrical probe Multi-shank versions fabricated