Reliable eural-Interface **Technology**

Jack W. Judy, Ph.D.

DARPA MTO

The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense

DoD Amputee Challenge

MICROSYSTEMS TECHNOLOCY OFFICE

- Limb loss: big DoD problem
- OIF/OEF limb loss:
 - ~80% lower limb(s)
 - ~20% upper limb(s)
 - ~25% multiple limbs

Soldiers with Limb Loss		
Civil War	~50,000	12.0%
WW1	2610	1.7%
WW2	7489	1.2%
Korea	1477	1.4%
Vietnam	5283	3.4%
OIF/OEF	~1000	2.3%

- Goal of the patient population
 - regain function needed to return to duty
 - maintain quality of life (rotation / post service)
- Requirements of prosthetic technology
 - high performance, robustness, and reliability

Cpl. Garrett S. Jones

- Lost leg in Iraq due to an IED (7/23/2007) while with the 2nd Battalion, 7th Marine Regiment, 1st Marine Division
- Redeployed with his unit to Afghanistan in early 2008

Sgt. James Wright

- Lost both hands and suffered a severe wound to his leg when his vehicle was struck by a RPG in Iraq's AI Anbar Province (4/7/2004)
- Received the Bronze Star with Combat V
- Refused to use the best commercially available prosthetic arms: "I remember when I first came back for rehabilitation, they were touting the myoelectric (battery-powered) hands as the greatest innovation. <u>I was so disappointed</u>."
- Began serving as a Martial Arts instructor later in 2004

Amputee Medical Care: Walter Reed Army Medical Center

- Largest Amputee Patient Population (~130)
- Sports-Medicine Model
 - immediate adaptation, training, acceptance
- Extensive Facilities
 - physical/occupational therapy:
 - track with overhead support, handrails with ramp
 - motion capture, climbing wall, etc.
 - simulators:
 - shooting, driving, skiing/snowboarding, etc.
 - prosthetics (best available):
 - proving grounds, beta testing, stress testing

WRAMC: Focus on the Goal

- Return to Active Duty
 - Physical:
 - running, climbing, throwing
 - Mission:
 - carrying, shooting, driving, ...
 - Timeline:
 - ~1 year (best ~4 months)
- Civilian Life (VA)
 - Personal:
 - eating, hygiene, dressing, social, ...
 - Physical and Professional:
 - strength, dexterity, sensitivity, sports, hobbies, ...

Go/No-Go: Breaking Down and Reassembling a Weapon

Cpl. Jones

Sgt. Wright

0:00/1:32 • 4

Brain-Machine Interfaces

PNS

CNS

Current Strategy

 record signals of many channels

DARP

Jack W. Judy

- use adaptive algorithms to decode brain activity
- map activity to control signals for prosthetic machine
- rely on visual feedback

- The Unfortunate Truth of BMI:
 - There <u>does not exist</u> a long-term (years) reliable neural-electronic interface or BMI
 - Even a one-bit switch has yet to be controlled reliably
 - Applications that call for high-precision/speed control of many-degree-of-freedom systems are presently out of reach
- Reliability Challenge 1:
 - Physical neural-electronic interface
 - Signal-to-noise ratio of single-unit potentials typically decays to zero in < 1 to 2 years (often much sooner)
- Reliability Challenge 2:
 - Fast and correct operation (>>99%) required
 - Friend, Friend, Friend, Foe, Friend, Foe, Friend, Friend, …

(oops)

Patient acceptance of prostheses

ARPA's Investment

COL Geoffrey Ling, M.D., Ph.D.

- **Helping the Wounded Warrior**
 - Human Assisted Neural Devices
 - **Revolutionizing Prosthetics**

State of Investment and Research in Neuroscience

Over the last 15 years, DARPA has heavily invested in technologies to develop prosthetics for wounded warriors. Less than 2% of this investment has gone to the neural interface.

Advances in prosthesis technology have far exceeded all neural interface technologies.

Observing Neural Activity Microsverence Control of Microsverence Contro

Invasive

Mobile High-Performance Neural Monitoring

Reliability of SOA Cortical Probe Arrays

Tissue Response

- Penetrating Microprobe Arrays: Foreign-Body Response
 - protein absorption, inflammatory reaction
 - increased impedance, decreased neuronal density: SNR ↓
- Mechanical Stiffness Mismatch

CNS Tissue Response: *Mechanical Challenges*

Approved for Public Release. Distribution Unlimited.

Approaches for Challenge 1: Unreliable Physical Interface

- Reduce Tissue Response: coatings, shrink size, flexible
- Avoid Tissue Response: high-resolution epidural sensing
- Overcome Tissue Response: reach across glial scar

Reliability of Neurotrophic Probes

Muscle Reinnervation

Dr. Kuiken (Rehabilitation Institute of Chicago)

- Transplant nerves from stump into other muscles
- Myoelectric read out allows more direct and natural "thought" control (enables only 4 control signals)
 - elbow up, elbow down, hand open, hand closed

Targeted Muscle Reinnervation Reliability Jack W. Judy

DARP

S TECHNOLOGY OFFICE

Reliability Challenge: Unreliable Brain-Control Algorithm

- Dominant Approach
 - use large electrode array
 - correlate neural activity with intended activity or behavior
 - develop adaptive algorithms
 - use output to control machine
- Problem
 - algorithms cannot adapt to the ultimate adapter (the brain)
 - approach fights built-in neural plasticity (dominant)
 - no examples of this approach ever being clinical successful
- Result
 - machine control is not reliable

Approach for Challenge: Unreliable Brain-Control Algorithm

- New Approach
 - use electrode array
 - no correlation required
 - use "fixed" algorithms
 - use output to control machine
 - do so in field-relevant setting
- Advantage
 - exploits instead of fights neural plasticity
 - brain adapts to new "limb" through trial-and-error process
 - many examples of this approach being successful
- Result
 - reliable machine control
 - requires stable interface

Higher-Performance and Reliable Brain-Controlled Neural Prosthetics

- Need <u>reliability</u> and <u>performance</u> metrics
 - Accelerated in-vivo testing
 - Pre-clinical testing at scale >> University labs
- Need new micromachined interfaces
 - High spatial and temporal resolution
 - Highly biocompatible
- Convenient, low-power, high-data-rate signal processing and wireless telemetry
- Need new system-level approaches with plasticity-enhanced reliable control

Impact of Reliable Control of More Prosthesis Degrees of Freedom

0 DOF: Passive Hook

1 DOF: Active Hook

2 DOF: Claw + Elbow soa **6 DOF:** Two Fingers

18 DOF: Forearm

22 DOF: Full Arm

DARPA QUESTIONS?

What makes DARPA unique...

Formed in 1958 to PREVENT and CREATE strategic surprise

Capabilities, mission focused

Finite duration projects

Diverse performers

Multi-disciplinary approach...from basic research to system engineering

As the DoD's innovation engine, we are committed to the boldest, creative leaps...

Creative leaps require...

Bold, best-in-class technical experts and knowledgeable, lean, adaptable support staff... ...who recognize opportunities and are empowered to act rapidly... ...and are unafraid to challenge conventional viewpoints or methods.

Conventional Warfare

Irregular Warfare

Optimize for adaptability (training/systems)

Overmatch: Army, Navy, Air Force, Marines

Space, Nuclear

Human Performance: Training/Preparation Survivability Care/Restoration

Deny Equalizers

Examples:

Take Bio off the table Adapt/rapid response

Take Cyber off the table Bio analogy (detect, deter, vaccinate, attribute, treat, etc.)

Space (Hegemonic vs. GCs)

Rogue nukes/decrease proliferation

Other...

Prototyping, system engineering (LMQ1)

Edge finding in a globalized world

Capture best minds/global mindshare

Other...

Doing business with DARPA...

Become familiar with the challenges and opportunities of National Security.

Put your ideas in writing. Draft a white paper.

Approach a program manager; they are the key to working with DARPA.

Look for Requests for Proposals (RFPs) and Broad Agency Announcement (BAAs) solicitations at <u>www.darpa.mil</u>, <u>www.darpa.mil/sbir</u>, or <u>www.fedbizopps.gov</u>.

Think boldly. Embrace risk.

Engaging with DARPA...

If you have an idea that is high-risk, high-reward and would like to do business with DARPA, please contact the appropriate Office Director or Program Manager.

www.darpa.mil