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Overview

• Introduction
 statistical simulation
 modeling basis
 correlation modeling

• Backward Propagation of Variance (BPV)
 general procedure
 consistency for global and local variations

• Examples and application

• Summary
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Modeling and Simulating Device Variations

• Limits (corners)
• Distributions
• Correlation
• Mismatch
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VTH Variation
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VTH Variation Big and Small devices
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VTH Correlation
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Modeling Variability: Global and Local Variations

• Models (partial) correlations using uncorrelated parameters
• Avoid using explicit correlation coefficients between pi
 mismatch is not “pair-wise” - O(N2) correlations for N devices!
 does not capture geometry dependence of pi variation
 does not allow mismatch-only simulation
 does not allow mismatch simulation if global variation is zero

> some parameters are included only for mismatch modeling
• Corner simulation models defined by setting nsgl
• Distribution simulation models sample nsgl and/or nsmm
 naturally has good numerical scaling

)(,, gnnpp mmpsmmglpsglii ii


 
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Statistical Modeling Basis

• Statistical models must be based on key physical parameters
 p fundamentally control device electrical performances e
 components of p are independent

> correlations between em , en from models, parameter mappings
 normally distributed pi

> log-normal em come through exp(pi) mappings in model files
> e.g. BJT base current (or ), MOSFET RS/D series resistance

 define p →SM mappings in model files if needed (BJT)

process
parameters

p

electrical
performances

e

model
parameters

SM
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Statistical Modeling Basis (2)

• Use uncorrelated process parameters p
 Vfb, tox, Nsub, 0, …

• Do not use correlated model parameters SM
 Vt0, , k’, …

• Always explains anomalous geometry, bias dependence

• Natural separation into absolute and relative (%) variations
 scales to ~1 for numerical stability, easy to mentally sanity check
 Vfb and lateral [LW] absolute, others relative

• Automatically gives correlations
 between model “parameters” (from p →SM mappings)
 between device electrical performances
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Statistical Simulation

• IC design flows can embody different types of statistical 
design practices

• The types of statistical simulation techniques used dictates 
the types of statistical models that are required
 corner simulations require case files
 MC simulations need distributional models
 mismatch analysis needs mismatch models
 sensitivity analysis needs physical models

• Global statistical models do not model 
  is only known accurately when it is too late to be of use
 define statistical models in terms of engineering specifications



Slide 11

McAndrew,  First International Variability Characterization Workshop, April 30, 2010

Mis-Propagation of Variance
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Mis-Propagation of Variance (2)

• In reality Vt0 and  are correlated, e.g. through tox
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Correlation Modeling via Uncorrelated Parameters
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Leff Modeling Approach: Analytical Example

• Lump correlated (common) variation into poly CD
 litho and etch are common between NMOS and PMOS

• Lump uncorrelated (independent) variation into source/drain 
out-diffusion
 source/drain implants differ between NMOS and PMOS

• Big question: how can these separate components be 
characterized? Start by forming

dpdLp OC 

dndLn OC 

LnLpL 



Slide 15

McAndrew,  First International Variability Characterization Workshop, April 30, 2010































































2

2

2

2

2

2

011
110
101

Cd

Odn

Odp

L

Ln

Lp











non-singular

Statistical Leff Modeling

• At first it seems there is no new information in L over that in 
the individual NMOS and PMOS L values

• But statistically there is
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Statistical Leff Characterization

• From measured data calculate the variances of Lp, Ln, and 
L, then

• There are only 2 measurements, how come we get 3 pieces 
of information from those?
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Statistical Leff Monte Carlo Simulation

• 10,000 Monte Carlo (MC) samples of Odp, Odn, Cd

LpLn=0.7964LpLn=0.7972LpLn=0.7964

Cd=0.02899L=0.02106L=0.02137

Odn=0.01993Ln=0.03473Ln=0.03518

Odp=0.00771Lp=0.02973Lp=0.02999

ModeledMC SimulationMeasured
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Statistical Leff MC Compared to Measured Data
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What is the Goal of Statistical Device Modeling?

Model A
Model D
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The Goal of Statistical Device Modeling!

Model A
Model D
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Extreme Case Characterization

• Generate data sets from TCAD simulations or “corner” lots
• Extract separate model parameter files from the data sets

• Only gives corner files, not distributional models
• Perturbations used to generate corner data
 not complete
 not accurate

• Not easily updated after process changes
• Not predictive, must be redone for a new process



Slide 22

McAndrew,  First International Variability Characterization Workshop, April 30, 2010

Numerical Approaches

• Principle Component Analysis (PCA) best known
 based on statistical extraction of model parameters

• Easy for EDA companies to provide generic software

• Can be very expensive to generate
 original methods required complete SPICE model extraction
 later approaches based on PCM data more efficient

• Sensitive to statistical “noise” in parameter extraction
• No physical basis or insight
• Not easily updated after process changes
• Not predictive, must be redone for a new process
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Forward Propagation of Variation (FPV)

• Directly measure variations in p

• Gives both distributional and corner models

• Cannot always measure pi directly
• Test structure or biasing can be very different from typical 

circuit use
• Different methods to measure pi can give different values
• Using the same pi variation in different models gives different 

em variation!
• Variation in em depends on number of pi as well as amount of 

perturbation
• No accounting for sensitivity ∂em/∂pi
 variation in em totally uncontrolled
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Backward Propagation of Variation (BPV)
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BPV in a Nutshell
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Linear BPV
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BPV Procedure

• Sensitivities are computed from SPICE models
 different values for different models (e.g. PSP and BSIM4)

• Mean, variance, skewness, and correlation of e based on 
manufacturing data
 adjusted using engineering knowledge to define specs
 skewness and correlation not needed for all performances
 correlation often important
 nonlinearity rarely important (occasionally for BJTs)

• BPV equations are solved for the mean and variance of the 
process parameters
 one or more FPV parameters can also be included
 if nonlinearities are small mean p can be directly computed using 

nonlinear least-squares optimization as a separate step
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Qualitative Evaluation 

• Perception
 looks hopelessly complex
 “math” scares engineers

• Reality
 when you get past the “math” and see what is really happening it 

is incredibly simple
 almost cheating

> “forces” statistics in pi to fit observed variations in em

 remember: the goal of modeling is to accurately represent em
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Mathematical Details

• The whole process falls in a heap if
 underlying basic SPICE models are inaccurate

> sensitivities get messed up
 there are inconsistencies in specification of the statistics

> variances can become negative
 measurements are not selected wisely

> the matrix of squared sensitivities becomes ill conditioned
• These are very good things
 not a “garbage in garbage out” process

> has to be well posed to give results
 detects problems in the above 3 areas

• Have not specified what “type” of variances
 same approach works for global and local (mismatch) variation
 performances can be device or circuit level



Slide 30

McAndrew,  First International Variability Characterization Workshop, April 30, 2010

Corner Models from BPV

• Specify generic corners in terms of em, not pi
 must use physical knowledge to avoid inconsistency
 easily solve using nonlinear least-squares optimizer

• Can also compute exact corners
for a specific em
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BPV Corner Models
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Corners

PMOS

NMOS

Global Variation

Local Variation

Local Variation

worst-case “digital”
(lots of devices)

worst-case “analog”
(single device)
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MOSFET Example: BSIM3 Distributional Modeling
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Mixed FPV and BPV
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Correlation for BSIM3: 10,000 Sample MC

 Targets   BPV Model   MC from BPV 
Model (10 000) 

          
p

r0thV  0.531 0.0149  p
fbV  -0.12 0.0148  p

r0thV  0.531 0.0147 
p

s0thV  0.509 0.0166  p
tlV  2.44 0.686  p

s0thV  0.509 0.0165 
p
r  34.4 1.8%  p

refbU 1.16 1.1%  p
r  34.4 1.8% 

p
satsI  3.75 3.9%  p

dO  0.14 0.011  p
satsI  3.76 4.1% 

n
r0thV  0.496 0.0091  n

fbV  -0.035 0.0088  n
r0thV  0.496 0.0088 

n
s0thV  0.536 0.0100  n

tlV  0.168 0.0007  n
s0thV  0.536 0.0102 

n
r  143.9 1.7%  n

refbU  0.984 1.04%  n
r  143.9 1.7% 

n
satsI  8.9 2.4%  n

dO  0.007 0.008  n
satsI  8.9 2.4% 

),( n
r

p
r    0.596  dC  0.04 0.017  ),( n

r
p
r    0.594 

),( n
sats

p
sats II  0.718  oxt  1.0* 1.43%  ),( n

sats
p
sats II 0.719 

 

tox is FPV
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Wide/Short Saturated Drain Current PDFs 
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Wide/Short Threshold Voltage PDFs
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Wide/Long Threshold Voltage, P vs. N
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Wide/Long Gain Factor, P vs. N
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Wide/Short Threshold Voltage, P vs. N
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Wide/Short Saturated Drain Current, P vs. N
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PSP Example

• Poly CD and out-diffusion length already available as 
separate parameters
 no need to add as equations
 poly CD parameter made common to PMOS and NMOS

• Threshold voltage depends on Vfb, tox, Nsub
• Body effect depends on tox, Nsub
• Vfb, Nsub are separate for PMOS and NMOS
• tox is common between PMOS and NMOS
• Include body effect and correlation between Vt0 of PMOS and 

NMOS as fitting quantities
 extends analytic correlation analysis to general numerical 

procedure
 enables statistics of tox to be determined from only dc data
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Fitting Correlation Enables Extraction of tox Variation
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Without Explicit Fitting of Idsat Correlation
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With Explicit Fitting of Idsat Correlation
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Same Formalism Applies to BJTs
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Same Formalism Applies to Mismatch

Vbs=0 Vbs=-2.5
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Current Mirror Mismatch, 10A
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Same Formalism Applies to em from Circuits 

• Goal is accurate modeling of variation of em of circuits
• In general em are from devices
 models assumed to be reasonable
 if device variations are modeled well, expectation is circuit 

variations will also be modeled well
• There is nothing in the BPV formalism that precludes some or 

all em from being circuit performances
• Added ring oscillator (RO) variations to the procedure
 measured at same sites as dc data were measured

• Depends on both PMOS and NMOS devices
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BPV Circuit Application: PSP for 0.18m CMOS

Saturation current for small device

Saturation current for short device

Idm

Ids

Gate delay for ring oscillatorstdRO

Threshold voltage for small deviceVtm
Small 
(0.24/0.2)

Threshold voltage for narrow 
deviceVtn

Narrow 
(0.24/10)

Threshold voltage for short deviceVts
Short 
(10/0.2)

Threshold voltage for large deviceVtr
Large 
(10/10)

Descriptionem
Device 
(W/L, μm)

Channel length variationLAP

Channel width variationWOT

Zero-field mobilityUO

Length-dependent flatband voltageVFBL

Geometry-independent flatband 
voltageVFBO

Oxide thicknessTOXO

Descriptionpi
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BPV Sensitivity Matrix Structure (tox is FPV)

NMOS

PMOS
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MC Based on BPV Model
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Addition of Extra em

• Fitting Ids only did not 
lead to best fit of 
statistics of RO delay 
over Vdd

• Added drain current at 
additional Vgs biases as 
targets

Ids

Ids3

Ids2
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Improved Modeling of RO Delay Variability over Vdd
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Issues and Opportunities

• Local variation is inherent in all small devices
 for “nominal” device characterization need median data

> otherwise Vt0(L) can be modeling “noise”
> cannot average data in weak and moderate inversion

• In the past, mm << gl so mismatch characterization could be 
done independently from global variation characterization
 no longer the case
 need to “correct” fab data: 

• Sensitivity-based corner model generation
• Education of limitations of corner models
 mixing global and local variation properly

• Statistical simulation needs to better leverage sensitivities
 these can be calculated automatically from Verilog-A code

222
mmfabgl  
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Summary

• BPV is cheating
 fudges parameter statistics to force-fit device variations
 choose targets wisely and this is exactly what is needed for design

• BPV works for both global and local statistical variations
 targets differ, procedure does not

• Recent extensions to BPV
 include CMOS circuit performances as targets

> couples NMOS and PMOS statistical characterization
 include more targets than minimum number

> gives improved modeling of td(Vdd)
 include skewness as a target

> allows fitting of nonlinear em(pi)
 include correlations as a target

> allows generic fitting of correlations with uncorrelated parameters
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