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Overview

* Introduction
= statistical simulation
= modeling basis
= correlation modeling

* Backward Propagation of Variance (BPV)
» general procedure

= consistency for global and local variations

* Examples and application

* Summary
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Modeling and Simulating Device Variations

i e Limits (corners)
5t 1 ® Distributions
* Correlation
£ e Mismatch

9
NMOS wide/short | ,_ (mA)
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V., Variation
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V. Variation Big and Small devices
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V;, Correlation
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Modeling Variability: Global and Local Variations

Pi = Pi +Nsg10p: g1 + Nsmm p; . mm (9)

* Models (partial) correlations using uncorrelated parameters
* Avoid using explicit correlation coefficients between p;
* mismatch is not “pair-wise” - O(N?) correlations for N devices!
= does not capture geometry dependence of p; variation
» does not allow mismatch-only simulation

» does not allow mismatch simulation if global variation is zero
> some parameters are included only for mismatch modeling

* Corner simulation models defined by setting n
* Distribution simulation models sample n
= naturally has good numerical scaling

sgl

sq @and/or ng .
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Statistical Modeling Basis

e Statistical models must be based on key physical parameters
» p fundamentally control device electrical performances e
= components of p are independent
> correlations between e, e, from models, parameter mappings
= normally distributed p;
> log-normal e, come through exp(p;) mappings in model files
> e.g. BJT base current (or ), MOSFET R, series resistance
» define p —SM mappings in model files if needed (BJT)

electrical
performances
e

process
parameters

p
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Statistical Modeling Basis (2)

e Use uncorrelated process parameters p

" Vi oo Noupr 105 ---
* Do not use correlated model parameters SM
= Vi, 7, K, ...

* Always explains anomalous geometry, bias dependence

* Natural separation into absolute and relative (%) variations
» scales to ~1 for numerical stability, easy to mentally sanity check
= Vy, and lateral A, absolute, others relative

* Automatically gives correlations
» petween model “parameters” (from p —SM mappings)
» pbetween device electrical performances
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Statistical Simulation

* |C design flows can embody different types of statistical
design practices

* The types of statistical simulation techniques used dictates
the types of statistical models that are required
= corner simulations require case files
= MC simulations need distributional models
= mismatch analysis needs mismatch models
» sensitivity analysis needs physical models

* Global statistical models do not model ¢
* 5 is only known accurately when it is too late to be of use
» define statistical models in terms of engineering specifications
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Mis-Propagation of Variance

* If gain factor g and zero-bias threshold V,, are uncorrelated

oenm Ny +25m oem
N0 op

Ry =

op
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Mis-Propagation of Variance (2)

* In reality V,, and g are correlated, e.g. through t,,

V
s —[%em Mo %em 0B )5
Ny Oty | OB Oty

Y
y [5em OVio aem op ) 2
tOX

OV Gtox of Oty

O Nip % OB
Ny Oty 0B oty
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Correlation Modeling via Uncorrelated Parameters
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L.+ Modeling Approach: Analytical Example

* Lump correlated (common) variation into poly CD
= |itho and etch are common between NMOS and PMOS
* Lump uncorrelated (independent) variation into source/drain
out-diffusion
= source/drain implants differ between NMOS and PMOS

ALp :Cd -I-Odp
A =Cq +Oqgn

* Big question: how can these separate components be
characterized? Start by forming

AL =ALp —Apn
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Statistical L Modeling

* At first it seems there is no new information in A, over that in

the individual NMOS and PMOS A, values

* But statistically there is

_A b
ALn

O ALp

2
O ALn

1

_+1

0

+1

0

singular

non-singular
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Statistical L Characterization

* From measured data calculate the variances of A, A, and
ApLs then

2 B | 2
O QOdp 1 =1 1] %ALp
2 4 « 4 2
2 1 1 7 2
OCd - 1 0aAL

* There are only 2 measurements, how come we get 3 pieces
of information from those? ’

OCd

PlpLn =

) 2 N2 2
\/(GOdp +0¢d )(@0dn +0Cd )
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Statistical L Monte Carlo Simulation

* 10,000 Monte Carlo (MC) samples of O, Oy,, C4

Measured MC Simulation Modeled

OpLp=0-02999 | 5, ,=0.02973 | 544,=0.00771

6, ,=0.03518 | 6,,,=0.03473 | 654,=0.01993

657 =0.02137 | 6, =0.02106 | c.4=0.02899

prLn=O - 7964 prLn=O . 7972 prLn=O 7964
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Statistical L  MC Compared to Measured Data
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What is the Goal of Statistical Device Modeling?

Model A
Model D

-0.9

-1.0

-1.1

-1.2

P-CHANNEL THRESHOLD VOLTAGE

I§ % EiE b 295;«:952-#3&“
i . i3 ﬁz M&%ws »3 B -c:% Hem
§% i it *:fsg}e i g_,““”‘*fﬁ‘, G
e S T e e 5 el
% G B :-:s-z:;mgx--&
i w%&’*ﬂ: b ,&ﬁ*ﬁﬁﬁ *%@g G ?giﬂ.; e
=-‘§ &-ﬁHW;H i b x {ﬁi R e -
e s ma ring
i ey
Bl e e ‘ R Fiay . "
i GELEC LR s
i £ B St Senat Bkt ety
i 5 B - B it
= il e
‘ﬁ_ " - e ;as&xm
- i e SN e e
- R
,,;c:g: SR >§v§
e b e
i *EEE»-EEM--&?&
K g—a—i& b o
o Qg = [ nl
S I“a'll cll'l llg
- Attt
L data
o e S
SR
» e
e
e
D00 L -
* e
£ 3 et -l
* N
e .,.. S it
Em e 2 Fi i
o ﬁ-a-«e-xw-&&- 56-629‘&3 Sy
S x;“% w:mms% e
e x§ ysw- oms e xﬁé-vnx:}-:
2 :
: %ﬁnﬁxmwmﬁm oﬂﬁﬁfiﬁﬁ'x =
e # :b, S R e
“ ‘”‘,‘;‘ i ’;ﬁgﬁ A
5 i
-».;-m i*ﬁo—'&&-‘s smmg&* o s e R e
i BRI E R xi:.u, CR R ety Ao
*;@% ; b .mx-x S o
& .:.&xi!i i *’F :w-w e -&M fae

0.8

0.5

06 07

N-CHANNEL THRESHOLD VOLTAGE

McAndrew, First International Variability Characterization Workshop, April 30, 2010

Slide 19




The Goal of Statistical Device Modeling!
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Extreme Case Characterization

* Generate data sets from TCAD simulations or “corner” lots
* Extract separate model parameter files from the data sets

* Only gives corner files, not distributional models

* Perturbations used to generate corner data
= not complete
= not accurate

* Not easily updated after process changes
* Not predictive, must be redone for a new process
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Numerical Approaches

* Principle Component Analysis (PCA) best known
» pased on statistical extraction of model parameters

* Easy for EDA companies to provide generic software

* Can be very expensive to generate
= original methods required complete SPICE model extraction
= |ater approaches based on PCM data more efficient

* Sensitive to statistical “noise” in parameter extraction
* No physical basis or insight

* Not easily updated after process changes

* Not predictive, must be redone for a new process
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Forward Propagation of Variation (FPV)

* Directly measure variations in p
® GGlves both distributional and corner models

* Cannot always measure p; directly

* Test structure or biasing can be very different from typical
circuit use

* Different methods to measure p; can give different values

* Using the same p; variation in different models gives different
e, variation!

* Variation in e, depends on number of p; as well as amount of
perturbation

* No accounting for sensitivity de,./op;
= variation in e, totally uncontrolled
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Backward Propagation of Variation (BPV)

* Goal is to model electrical performances, not parameters
* Based on sensitivity analysis

em(P) = em(5)+zsm,i5pi +Zsm,ij5pi5pj

1, ]
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BPV in a Nutshell

He,, =€m(P)+ Z:Sm,iio'i2
i

2 2 2 2 2
Gem ZZ Sm,i+2zsm,ijf7j g

| J
—L 6Sm iSm iSmii +8Y SmiiSm ik Sm ki OL (0207
Ven 3 m,i=m, j °m,ij m,ij°m, jk°>m,ki€k [€i O j
Gem ] k

2| 2
Oe. e =Z Sm,iSn,| +2zsm,ij5n,ij5j i
i ]
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Linear BPV

He,, = €m (P)
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BPV Procedure

* Sensitivities are computed from SPICE models
» different values for different models (e.g. PSP and BSIM4)
* Mean, variance, skewness, and correlation of e based on
manufacturing data
» adjusted using engineering knowledge to define specs
» skewness and correlation not needed for all performances
= correlation often important
* nonlinearity rarely important (occasionally for BJTS)
* BPV equations are solved for the mean and variance of the
process parameters
* one or more FPV parameters can also be included

* if nonlinearities are small mean p can be directly computed using
nonlinear least-squares optimization as a separate step
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Qualitative Evaluation

* Perception
» looks hopelessly complex
* “math” scares engineers

* Reality
= when you get past the “math” and see what is really happening it
Is incredibly simple
= almost cheating
> “forces” statistics in p; to fit observed variations in e,
= remember: the goal of modeling is to accurately represent e
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Mathematical Detalils

* The whole process falls in a heap if
= underlying basic SPICE models are inaccurate
> sensitivities get messed up
» there are inconsistencies in specification of the statistics
> variances can become negative

" measurements are not selected wisely
> the matrix of squared sensitivities becomes ill conditioned
* These are very good things

* not a “garbage in garbage out” process
> has to be well posed to give results

= detects problems in the above 3 areas

* Have not specified what “type” of variances
» same approach works for global and local (mismatch) variation
» performances can be device or circuit level
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Corner Models from BPV

* Specify generic corners in terms of e.,, not p;
» must use physical knowledge to avoid inconsistency
» easily solve using nonlinear least-squares optimizer
* Can also compute exact corners

. 4P,
for a specific e,
max o€y, subject to 5pTC_15p = 7°
Y
Ptz =2 g=%m _ Y
/STCS op e U\ N—
2
5pi — 47 O-i (8em/pl) . - C
2,77 (@en/pj)” f
j 3G op
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BPV Corner Models
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cCorners

PMOS & \worst-case *analog”

(single device)

Local Variation

worst-case “digital”
Local Variation (lots of devices)

NMOS
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MOSFET Example: BSIM3 Distributional Modeling
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Mixed FPV and BPV
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Correlation for BSIM3: 10,000 Sample MC

Targets BPV Model l\l\/f(ilg(zrlno%l())g)
u o u o u o
V2, 0.531 | 0.0149 Ve | -0.12 | 0.0148 V2, 0.531 | 0.0147
N 0.509 | 0.0166 VP | 244 | 0.686 V2 0.509 | 0.0165
B 344 | 1.8% U, | 116 | 1.1% B 344 | 1.8%
1P 375 | 39% | [(O))| 014 | o011 1> 376 | 4.1%
V) 0.496 | 0.0091 V! | -0.035 | 0.0088 V) 0.496 | 0.0088
iR 0.536 | 0.0100 Ve | 0168 | 0.0007 V) 0.536 | 0.0102
B 143.9 | 1.7% UL, | 0984 | 1.04% B 1439 | 1.7%
1" 89 | 24% | [(O)| 0007 | 0.008 1" 89 | 2.4%
(B2, A1) 0.596 0.04 | 0.017 (B2, ) 0.594
p(12 10 ) 0.718 t, 1.0° 1.43% P12, 12 0.719

t, is FPV
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Wide/Short Saturated Drain Current PDFs
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dashed: MC from BPV Model

solld: Measurements
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Wide/Short Threshold Voltage PDFs
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Wide/Long Threshold Voltage, P vs. N
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Wide/Long Gain Factor, P vs. N
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Wide/Short Threshold Voltage, P vs. N
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Wide/Short Saturated Drain Current, P vs. N
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PSP Example

* Poly CD and out-diffusion length already available as
separate parameters
" no need to add as equations
» poly CD parameter made common to PMOS and NMOS
* Threshold voltage depends on Vg, t.,, N
* Body effect depends ont,,, N,

* Vq, N, are separate for PMOS and NMOS

ox? 'Vsub

sub

* t,, Is common between PMOS and NMOS
* Include body effect and correlation between V,, of PMOS and
NMQOS as fitting quantities

= extends analytic correlation analysis to general numerical
procedure
= enables statistics of t,, to be determined from only dc data
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Fitting Correlation Enables Extraction of t, Variation
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Without Explicit Fitting of 1, Correlation
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With Explicit Fitting of 1, Correlation
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Same Formalism Applies to BJTs

af
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Same Formalism Applies to Mismatch
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Current Mirror Mismatch, 10uA
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Same Formalism Applies to e, from Circuits

* Goal Is accurate modeling of variation of e of circuits

* In general e, are from devices
= models assumed to be reasonable

= if device variations are modeled well, expectation is circuit
variations will also be modeled well

* There is nothing in the BPV formalism that precludes some or
all e, from being circuit performances
* Added ring oscillator (RO) variations to the procedure
* measured at same sites as dc data were measured

* Depends on both PMOS and NMOS devices
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BPV Circuit Application: PSP for 0.18um CMOS

Device L .
(WI/L, pm) Cm Description p; Description
Large V Threshold voltage for large device TOXO Oxide thickness
(10/10) tr
V Threshold voltage for short device Geometry-independent flatband
ts VFBO
Short voltage
(10/0.2)
lys Saturation current for short device
VFBL Length-dependent flatband voltage
Narrow v Threshold voltage for narrow
(0.24/10) tn device
uo Zero-field mobility
Vim Threshold voltage for small device
Small
(0.24/0.2) LAP Channel length variation
lam Saturation current for small device
RO ty Gate delay for ring oscillators WOT Channel width variation
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BPV Sensitivity Matrix Structure (t,, Is FPV)

NMOS

PMOS

circuit
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MC Based on BPV Model

[ Measurements [] Measurements
120 * 5t Normaidistribution it  10/0.2pum
- Normal distribution fit for measurements .a. NOMa ribution .
for measurements

—= Normal distribution fit
4} for MC simulatlons

= Normal distribution fit for MC simulations

2 2 7l
@ W
= =
2
1t
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Addition of Extra e,

* Fitting 14 only did not 04

lead to best fit of

statistics of RO delay E 031

over Vg,
Loz
e Added drain current at
additional V4 biases as 0.1}
targets
0
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Improved Modeling of RO Delay Variability over V

15

#®  dats

= model, single I Fit

I
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D

ip=i

o

o | 1 | 1 1 1 | | |
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
LR
ID

McAndrew, First International Variability Characterization Workshop, April 30, 2010

Slide 54



Issues and Opportunities

e | ocal variation is inherent in all small devices

» for “nominal” device characterization need median data
> otherwise V(L) can be modeling “noise”
> cannot average data in weak and moderate inversion

* In the past, o, << o, SO mismatch characterization could be
done independently from global variation characterization
* no longer the case
. negc} t.o “correct” fab data: aé = O'%ab —.O'r%]m
* Sensitivity-based corner model generation

e Education of limitations of corner models

= mixing global and local variation properly
e Statistical simulation needs to better leverage sensitivities
» these can be calculated automatically from Verilog-A code
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* BPV is cheating
» fudges parameter statistics to force-fit device variations
» choose targets wisely and this is exactly what is needed for design

* BPV works for both global and local statistical variations
= targets differ, procedure does not

* Recent extensions to BPV
» include CMOS circuit performances as targets
> couples NMOS and PMOS statistical characterization
* include more targets than minimum number
> gives improved modeling of t,(Vy,)
* include skewness as a target
> allows fitting of nonlinear e (p;)
* include correlations as a target
> allows generic fitting of correlations with uncorrelated parameters
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