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Overview

• Introduction
 statistical simulation
 modeling basis
 correlation modeling

• Backward Propagation of Variance (BPV)
 general procedure
 consistency for global and local variations

• Examples and application

• Summary
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Modeling and Simulating Device Variations

• Limits (corners)
• Distributions
• Correlation
• Mismatch
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VTH Variation
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VTH Variation Big and Small devices
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VTH Correlation
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Modeling Variability: Global and Local Variations

• Models (partial) correlations using uncorrelated parameters
• Avoid using explicit correlation coefficients between pi
 mismatch is not “pair-wise” - O(N2) correlations for N devices!
 does not capture geometry dependence of pi variation
 does not allow mismatch-only simulation
 does not allow mismatch simulation if global variation is zero

> some parameters are included only for mismatch modeling
• Corner simulation models defined by setting nsgl
• Distribution simulation models sample nsgl and/or nsmm
 naturally has good numerical scaling

)(,, gnnpp mmpsmmglpsglii ii
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Statistical Modeling Basis

• Statistical models must be based on key physical parameters
 p fundamentally control device electrical performances e
 components of p are independent

> correlations between em , en from models, parameter mappings
 normally distributed pi

> log-normal em come through exp(pi) mappings in model files
> e.g. BJT base current (or ), MOSFET RS/D series resistance

 define p →SM mappings in model files if needed (BJT)

process
parameters

p

electrical
performances

e

model
parameters

SM
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Statistical Modeling Basis (2)

• Use uncorrelated process parameters p
 Vfb, tox, Nsub, 0, …

• Do not use correlated model parameters SM
 Vt0, , k’, …

• Always explains anomalous geometry, bias dependence

• Natural separation into absolute and relative (%) variations
 scales to ~1 for numerical stability, easy to mentally sanity check
 Vfb and lateral [LW] absolute, others relative

• Automatically gives correlations
 between model “parameters” (from p →SM mappings)
 between device electrical performances
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Statistical Simulation

• IC design flows can embody different types of statistical 
design practices

• The types of statistical simulation techniques used dictates 
the types of statistical models that are required
 corner simulations require case files
 MC simulations need distributional models
 mismatch analysis needs mismatch models
 sensitivity analysis needs physical models

• Global statistical models do not model 
  is only known accurately when it is too late to be of use
 define statistical models in terms of engineering specifications
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Mis-Propagation of Variance
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Mis-Propagation of Variance (2)

• In reality Vt0 and  are correlated, e.g. through tox
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Correlation Modeling via Uncorrelated Parameters
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Leff Modeling Approach: Analytical Example

• Lump correlated (common) variation into poly CD
 litho and etch are common between NMOS and PMOS

• Lump uncorrelated (independent) variation into source/drain 
out-diffusion
 source/drain implants differ between NMOS and PMOS

• Big question: how can these separate components be 
characterized? Start by forming

dpdLp OC 

dndLn OC 

LnLpL 
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Statistical Leff Modeling

• At first it seems there is no new information in L over that in 
the individual NMOS and PMOS L values

• But statistically there is
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Statistical Leff Characterization

• From measured data calculate the variances of Lp, Ln, and 
L, then

• There are only 2 measurements, how come we get 3 pieces 
of information from those?
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Statistical Leff Monte Carlo Simulation

• 10,000 Monte Carlo (MC) samples of Odp, Odn, Cd

LpLn=0.7964LpLn=0.7972LpLn=0.7964

Cd=0.02899L=0.02106L=0.02137

Odn=0.01993Ln=0.03473Ln=0.03518

Odp=0.00771Lp=0.02973Lp=0.02999

ModeledMC SimulationMeasured
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Statistical Leff MC Compared to Measured Data
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What is the Goal of Statistical Device Modeling?

Model A
Model D
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The Goal of Statistical Device Modeling!

Model A
Model D
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Extreme Case Characterization

• Generate data sets from TCAD simulations or “corner” lots
• Extract separate model parameter files from the data sets

• Only gives corner files, not distributional models
• Perturbations used to generate corner data
 not complete
 not accurate

• Not easily updated after process changes
• Not predictive, must be redone for a new process
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Numerical Approaches

• Principle Component Analysis (PCA) best known
 based on statistical extraction of model parameters

• Easy for EDA companies to provide generic software

• Can be very expensive to generate
 original methods required complete SPICE model extraction
 later approaches based on PCM data more efficient

• Sensitive to statistical “noise” in parameter extraction
• No physical basis or insight
• Not easily updated after process changes
• Not predictive, must be redone for a new process
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Forward Propagation of Variation (FPV)

• Directly measure variations in p

• Gives both distributional and corner models

• Cannot always measure pi directly
• Test structure or biasing can be very different from typical 

circuit use
• Different methods to measure pi can give different values
• Using the same pi variation in different models gives different 

em variation!
• Variation in em depends on number of pi as well as amount of 

perturbation
• No accounting for sensitivity ∂em/∂pi
 variation in em totally uncontrolled
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Backward Propagation of Variation (BPV)
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BPV in a Nutshell
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Linear BPV
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BPV Procedure

• Sensitivities are computed from SPICE models
 different values for different models (e.g. PSP and BSIM4)

• Mean, variance, skewness, and correlation of e based on 
manufacturing data
 adjusted using engineering knowledge to define specs
 skewness and correlation not needed for all performances
 correlation often important
 nonlinearity rarely important (occasionally for BJTs)

• BPV equations are solved for the mean and variance of the 
process parameters
 one or more FPV parameters can also be included
 if nonlinearities are small mean p can be directly computed using 

nonlinear least-squares optimization as a separate step
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Qualitative Evaluation 

• Perception
 looks hopelessly complex
 “math” scares engineers

• Reality
 when you get past the “math” and see what is really happening it 

is incredibly simple
 almost cheating

> “forces” statistics in pi to fit observed variations in em

 remember: the goal of modeling is to accurately represent em
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Mathematical Details

• The whole process falls in a heap if
 underlying basic SPICE models are inaccurate

> sensitivities get messed up
 there are inconsistencies in specification of the statistics

> variances can become negative
 measurements are not selected wisely

> the matrix of squared sensitivities becomes ill conditioned
• These are very good things
 not a “garbage in garbage out” process

> has to be well posed to give results
 detects problems in the above 3 areas

• Have not specified what “type” of variances
 same approach works for global and local (mismatch) variation
 performances can be device or circuit level
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Corner Models from BPV

• Specify generic corners in terms of em, not pi
 must use physical knowledge to avoid inconsistency
 easily solve using nonlinear least-squares optimizer

• Can also compute exact corners
for a specific em

pi

pj
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BPV Corner Models
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Corners

PMOS

NMOS

Global Variation

Local Variation

Local Variation

worst-case “digital”
(lots of devices)

worst-case “analog”
(single device)
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MOSFET Example: BSIM3 Distributional Modeling
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Mixed FPV and BPV
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Correlation for BSIM3: 10,000 Sample MC

 Targets   BPV Model   MC from BPV 
Model (10 000) 

          
p

r0thV  0.531 0.0149  p
fbV  -0.12 0.0148  p

r0thV  0.531 0.0147 
p

s0thV  0.509 0.0166  p
tlV  2.44 0.686  p

s0thV  0.509 0.0165 
p
r  34.4 1.8%  p

refbU 1.16 1.1%  p
r  34.4 1.8% 

p
satsI  3.75 3.9%  p

dO  0.14 0.011  p
satsI  3.76 4.1% 

n
r0thV  0.496 0.0091  n

fbV  -0.035 0.0088  n
r0thV  0.496 0.0088 

n
s0thV  0.536 0.0100  n

tlV  0.168 0.0007  n
s0thV  0.536 0.0102 

n
r  143.9 1.7%  n

refbU  0.984 1.04%  n
r  143.9 1.7% 

n
satsI  8.9 2.4%  n

dO  0.007 0.008  n
satsI  8.9 2.4% 

),( n
r

p
r    0.596  dC  0.04 0.017  ),( n

r
p
r    0.594 

),( n
sats

p
sats II  0.718  oxt  1.0* 1.43%  ),( n

sats
p
sats II 0.719 

 

tox is FPV
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Wide/Short Saturated Drain Current PDFs 
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Wide/Short Threshold Voltage PDFs
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Wide/Long Threshold Voltage, P vs. N
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Wide/Long Gain Factor, P vs. N
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Wide/Short Threshold Voltage, P vs. N
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Wide/Short Saturated Drain Current, P vs. N
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PSP Example

• Poly CD and out-diffusion length already available as 
separate parameters
 no need to add as equations
 poly CD parameter made common to PMOS and NMOS

• Threshold voltage depends on Vfb, tox, Nsub
• Body effect depends on tox, Nsub
• Vfb, Nsub are separate for PMOS and NMOS
• tox is common between PMOS and NMOS
• Include body effect and correlation between Vt0 of PMOS and 

NMOS as fitting quantities
 extends analytic correlation analysis to general numerical 

procedure
 enables statistics of tox to be determined from only dc data
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Fitting Correlation Enables Extraction of tox Variation
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Without Explicit Fitting of Idsat Correlation
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With Explicit Fitting of Idsat Correlation
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Same Formalism Applies to BJTs
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Same Formalism Applies to Mismatch

Vbs=0 Vbs=-2.5
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Current Mirror Mismatch, 10A
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Same Formalism Applies to em from Circuits 

• Goal is accurate modeling of variation of em of circuits
• In general em are from devices
 models assumed to be reasonable
 if device variations are modeled well, expectation is circuit 

variations will also be modeled well
• There is nothing in the BPV formalism that precludes some or 

all em from being circuit performances
• Added ring oscillator (RO) variations to the procedure
 measured at same sites as dc data were measured

• Depends on both PMOS and NMOS devices
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BPV Circuit Application: PSP for 0.18m CMOS

Saturation current for small device

Saturation current for short device

Idm

Ids

Gate delay for ring oscillatorstdRO

Threshold voltage for small deviceVtm
Small 
(0.24/0.2)

Threshold voltage for narrow 
deviceVtn

Narrow 
(0.24/10)

Threshold voltage for short deviceVts
Short 
(10/0.2)

Threshold voltage for large deviceVtr
Large 
(10/10)

Descriptionem
Device 
(W/L, μm)

Channel length variationLAP

Channel width variationWOT

Zero-field mobilityUO

Length-dependent flatband voltageVFBL

Geometry-independent flatband 
voltageVFBO

Oxide thicknessTOXO

Descriptionpi
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BPV Sensitivity Matrix Structure (tox is FPV)

NMOS

PMOS

circuit


































































































































































2

2

22

2

2

2
2

2

2
2

2

2
2

2

0

0

P

N

ox
oxC

ox
oxP

ox
oxN

P

C

N

C

P

P

N

N

t
t

ox

C
ox

t
t

ox

P
ox

t
t

ox

N
ox

t
t

t
t

t
t

p

p

e

e

e

p
e

p
e

p
e

p
e

e

e

e



















Slide 52

McAndrew,  First International Variability Characterization Workshop, April 30, 2010

MC Based on BPV Model
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Addition of Extra em

• Fitting Ids only did not 
lead to best fit of 
statistics of RO delay 
over Vdd

• Added drain current at 
additional Vgs biases as 
targets

Ids

Ids3

Ids2
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Improved Modeling of RO Delay Variability over Vdd
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Issues and Opportunities

• Local variation is inherent in all small devices
 for “nominal” device characterization need median data

> otherwise Vt0(L) can be modeling “noise”
> cannot average data in weak and moderate inversion

• In the past, mm << gl so mismatch characterization could be 
done independently from global variation characterization
 no longer the case
 need to “correct” fab data: 

• Sensitivity-based corner model generation
• Education of limitations of corner models
 mixing global and local variation properly

• Statistical simulation needs to better leverage sensitivities
 these can be calculated automatically from Verilog-A code

222
mmfabgl  
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Summary

• BPV is cheating
 fudges parameter statistics to force-fit device variations
 choose targets wisely and this is exactly what is needed for design

• BPV works for both global and local statistical variations
 targets differ, procedure does not

• Recent extensions to BPV
 include CMOS circuit performances as targets

> couples NMOS and PMOS statistical characterization
 include more targets than minimum number

> gives improved modeling of td(Vdd)
 include skewness as a target

> allows fitting of nonlinear em(pi)
 include correlations as a target

> allows generic fitting of correlations with uncorrelated parameters
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