Variability Modeling at the Device Level for Circuit Simulation

Colin McAndrew Freescale Semiconductor

Overview

- Introduction
 - statistical simulation
 - modeling basis
 - correlation modeling
- Backward Propagation of Variance (BPV)
 - general procedure
 - consistency for global and local variations
- Examples and application
- Summary

Modeling and Simulating Device Variations

- Limits (corners)
- Distributions
- Correlation
- Mismatch

$\overline{V_{TH}}$ Variation

V_{TH} Variation Big and Small devices

V_{TH} Correlation

$$p_i = \overline{p}_i + n_{sgl}\sigma_{p_i,gl} + n_{smm}\sigma_{p_i,mm}(\vec{g})$$

- Models (partial) correlations using uncorrelated parameters
- Avoid using explicit correlation coefficients between p_i
 - mismatch is **not** "pair-wise" $O(N^2)$ correlations for N devices!
 - does not capture geometry dependence of p_i variation
 - does not allow mismatch-only simulation
 - does not allow mismatch simulation if global variation is zero
 some parameters are included only for mismatch modeling
- Corner simulation models defined by setting n_{sgl}
- Distribution simulation models sample n_{sgl} and/or n_{smm}
 - naturally has good numerical scaling

- Statistical models must be based on key physical parameters
 - p fundamentally control device electrical performances e
 - components of p are independent
 - > correlations between e_m , e_n from models, parameter mappings
 - normally distributed p_i
 - > log-normal e_m come through $\exp(p_i)$ mappings in model files
 - > e.g. BJT base current (or β), MOSFET $R_{S/D}$ series resistance
 - define $p \rightarrow SM$ mappings in model files if needed (BJT)

- Use uncorrelated process parameters *p*
 - $V_{fb}, t_{ox}, N_{sub}, \mu_0, \dots$
- Do not use correlated model parameters SM
 - $V_{t0}, \gamma, k', \dots$
- Always explains anomalous geometry, bias dependence
- Natural separation into absolute and relative (%) variations
 - scales to ~1 for numerical stability, easy to mentally sanity check
 - V_{fb} and lateral $\Delta_{[LW]}$ absolute, others relative
- Automatically gives correlations
 - between model "parameters" (from $p \rightarrow SM$ mappings)
 - between device electrical performances

- IC design flows can embody different types of statistical design practices
- The types of statistical simulation techniques used dictates the types of statistical models that are required
 - corner simulations require case files
 - MC simulations need distributional models
 - mismatch analysis needs mismatch models
 - sensitivity analysis needs physical models
- \bullet Global statistical models do not model σ
 - σ is only known accurately when it is too late to be of use
 - define statistical models in terms of engineering specifications

• If gain factor β and zero-bias threshold V_{t0} are uncorrelated

$$\begin{split} \delta e_m &= \frac{\partial e_m}{\partial V_{t0}} \delta V_{t0} + \frac{\partial e_m}{\partial \beta} \delta \beta \\ \sigma_{e_m}^2 &= \left(\frac{\partial e_m}{\partial V_{t0}}\right)^2 \sigma_{V_{t0}}^2 + \left(\frac{\partial e_m}{\partial \beta}\right)^2 \sigma_{\beta}^2 \end{split}$$

$$\beta = \mu_0 C'_{ox} \frac{W}{L} = k' \frac{W}{L}$$

• In reality V_{t0} and β are correlated, e.g. through t_{ox}

$$\delta e_{m} = \left(\frac{\partial e_{m}}{\partial V_{t0}} \frac{\partial V_{t0}}{\partial t_{ox}} + \frac{\partial e_{m}}{\partial \beta} \frac{\partial \beta}{\partial t_{ox}}\right) \delta t_{ox}$$

$$\sigma_{e_{m}}^{2} = \left(\frac{\partial e_{m}}{\partial V_{t0}} \frac{\partial V_{t0}}{\partial t_{ox}} + \frac{\partial e_{m}}{\partial \beta} \frac{\partial \beta}{\partial t_{ox}}\right)^{2} \sigma_{t_{ox}}^{2}$$

$$= \left(\frac{\partial e_{m}}{\partial V_{t0}}\right)^{2} \sigma_{V_{t0}}^{2} + \left(\frac{\partial e_{m}}{\partial \beta}\right)^{2} \sigma_{\beta}^{2}$$

$$+ 2 \frac{\partial e_{m}}{\partial V_{t0}} \frac{\partial V_{t0}}{\partial t_{ox}} \frac{\partial e_{m}}{\partial \beta} \frac{\partial \beta}{\partial t_{ox}} \sigma_{t_{ox}}^{2}$$

Correlation Modeling via Uncorrelated Parameters

L_{eff} Modeling Approach: Analytical Example

- Lump correlated (common) variation into poly CD
 - Iitho and etch are common between NMOS and PMOS
- Lump uncorrelated (independent) variation into source/drain out-diffusion
 - source/drain implants differ between NMOS and PMOS

$$\Delta_{Lp} = C_d + O_{dp}$$

$$\Delta_{Ln} = C_d + O_{dn}$$

• Big question: how can these separate components be characterized? Start by forming

$$\Delta_{\Delta L} = \Delta_{Lp} - \Delta_{Ln}$$

- At first it seems there is no new information in $\Delta_{\Delta L}$ over that in the individual NMOS and PMOS Δ_L values
- But statistically there is

• From measured data calculate the variances of Δ_{Lp} , Δ_{Ln} , and $\Delta_{\Lambda L}$, then

• There are only 2 measurements, how come we get 3 pieces of information from those?

$$\rho_{LpLn} = \frac{\sigma_{Cd}^2}{\sqrt{(\sigma_{Odp}^2 + \sigma_{Cd}^2)(\sigma_{Odn}^2 + \sigma_{Cd}^2)}}$$

Statistical L_{eff} Monte Carlo Simulation

• 10,000 Monte Carlo (MC) samples of O_{dp} , O_{dn} , C_d

Measured	MC Simulation	Modeled
σ _{ΔLp} =0.02999	σ _{ΔLp} =0.02973	σ _{Odp} =0.00771
σ _{ΔLn} =0.03518	σ _{ΔLn} =0.03473	σ _{Odn} =0.01993
σ _{ΔΔL} =0.02137	$\sigma_{\Delta\Delta L}$ =0.02106	σ _{Cd} =0.02899
ρ _{LpLn} =0.7964	ρ _{LpLn} =0.7972	ρ _{LpLn} =0.7964

Statistical L_{eff} MC Compared to Measured Data

What is the Goal of Statistical Device Modeling?

The Goal of Statistical Device Modeling!

- Generate data sets from TCAD simulations or "corner" lots
- Extract separate model parameter files from the data sets
- Only gives corner files, not distributional models
- Perturbations used to generate corner data
 - not complete
 - not accurate
- Not easily updated after process changes
- Not predictive, must be redone for a new process

- Principle Component Analysis (PCA) best known
 - based on statistical extraction of model parameters
- Easy for EDA companies to provide generic software
- Can be very expensive to generate
 - original methods required complete SPICE model extraction
 - later approaches based on PCM data more efficient
- Sensitive to statistical "noise" in parameter extraction
- No physical basis or insight
- Not easily updated after process changes
- Not predictive, must be redone for a new process

Forward Propagation of Variation (FPV)

- Directly measure variations in *p*
- Gives both distributional and corner models
- Cannot always measure p_i directly
- Test structure or biasing can be very different from typical circuit use
- Different methods to measure p_i can give different values
- Using the same p_i variation in different models gives different e_m variation!
- Variation in e_m depends on number of p_i as well as amount of perturbation
- No accounting for sensitivity $\partial e_m / \partial p_i$
 - variation in e_m totally uncontrolled

Backward Propagation of Variation (BPV)

- Goal is to model electrical performances, not parameters
- Based on sensitivity analysis

$$e_m(\mathbf{p}) = e_m(\overline{\mathbf{p}}) + \sum_i s_{m,i} \delta p_i + \sum_{i,j} s_{m,ij} \delta p_i \delta p_j$$

$$s_{m,i} = \left(\frac{\partial e_m}{\partial p_i}\right)_{\boldsymbol{p} = \overline{\boldsymbol{p}}} \qquad s_{m,ij} = \frac{1}{2} \left(\frac{\partial^2 e_m}{\partial p_i \partial p_j}\right)_{\boldsymbol{p} = \overline{\boldsymbol{p}}} \qquad \delta p_i = p_i - \overline{p}_i$$

BPV in a Nutshell

$$\mu_{e_m} = e_m(\overline{p}) + \sum_i s_{m,ii} \sigma_i^2$$
$$\sigma_{e_m}^2 = \sum_i \left(s_{m,i}^2 + 2\sum_j s_{m,ij}^2 \sigma_j^2 \right) \sigma_i^2$$

$$\gamma_{e_m} = \frac{1}{\sigma_{e_m}^3} \sum_{i,j} \left(6s_{m,i} s_{m,j} s_{m,ij} + 8 \sum_k s_{m,ij} s_{m,jk} s_{m,ki} \sigma_k^2 \right) \sigma_i^2 \sigma_j^2$$
$$\sigma_{e_m,e_n} = \sum_i \left(s_{m,i} s_{n,i} + 2 \sum_j s_{m,ij} s_{n,ij} \sigma_j^2 \right) \sigma_i^2$$

Linear BPV

$$\mu_{e_m} = e_m(\overline{p})$$

$$\sigma_{e_m}^2 = \sum_i s_{m,i}^2 \sigma_i^2$$

$$\sigma_{e_m,e_n} = \sum_i s_{m,i} s_{n,i} \sigma_i^2$$

BPV Procedure

- Sensitivities are computed from SPICE models
 - different values for different models (e.g. PSP and BSIM4)
- Mean, variance, skewness, and correlation of *e* based on manufacturing data
 - adjusted using engineering knowledge to define specs
 - skewness and correlation not needed for all performances
 - correlation often important
 - nonlinearity rarely important (occasionally for BJTs)
- BPV equations are solved for the mean and variance of the process parameters
 - one or more FPV parameters can also be included
 - if nonlinearities are small mean p can be directly computed using nonlinear least-squares optimization as a separate step

Qualitative Evaluation

- Perception
 - Iooks hopelessly complex
 - "math" scares engineers
- Reality
 - when you get past the "math" and see what is really happening it is *incredibly* simple
 - almost cheating
 - > "forces" statistics in p_i to fit observed variations in e_m
 - remember: the goal of modeling is to accurately represent e_m

- The whole process falls in a heap if
 - underlying basic SPICE models are inaccurate
 sensitivities get messed up
 - there are inconsistencies in specification of the statistics
 variances can become negative
 - measurements are not selected wisely
 - > the matrix of squared sensitivities becomes ill conditioned
- These are very **good** things
 - not a "garbage in garbage out" process
 - > has to be well posed to give results
 - detects problems in the above 3 areas
- Have not specified what "type" of variances
 - same approach works for global and local (mismatch) variation
 - performances can be device or circuit level

Corner Models from BPV

- Specify generic corners in terms of e_m , not p_i
 - must use physical knowledge to avoid inconsistency
 - easily solve using nonlinear least-squares optimizer
- Can also compute exact corners for a specific e_m

BPV Corner Models

Corners

MOSFET Example: BSIM3 Distributional Modeling

$$\begin{bmatrix} \sigma_{\partial V_{tr}}^{2} \\ \sigma_{\partial \overline{\partial P_{t}}}^{2} \\ \sigma_{\partial \overline{\partial P_{ts}}}^{2} \\ \sigma_{\partial \overline{\partial P_{ts}}}^{2} \\ \sigma_{\partial \overline{\partial P_{ts}}}^{2} \end{bmatrix}_{=} \begin{bmatrix} \left(t_{ox} \frac{\partial V_{tr}}{\partial t_{ox}} \right)^{2} & \left(\frac{\partial V_{tr}}{\partial V_{fb}} \right)^{2} & \left(\mu_{0} \frac{\partial V_{tr}}{\partial \mu_{0}} \right)^{2} & \left(\frac{\partial V_{tr}}{\partial \Delta_{L}} \right)^{2} & \left(\frac{\partial V_{tr}}{\partial V_{tl}} \right)^{2} \\ \left(\frac{t_{ox}}{\beta_{r}} \frac{\partial \beta_{r}}{\partial t_{ox}} \right)^{2} & \left(\frac{1}{\beta_{r}} \frac{\partial \beta_{r}}{\partial V_{fb}} \right)^{2} & \left(\frac{\mu_{0}}{\beta_{r}} \frac{\partial \beta_{r}}{\partial \mu_{0}} \right)^{2} & \left(\frac{1}{\beta_{r}} \frac{\partial \beta_{r}}{\partial \Delta_{L}} \right)^{2} & \left(\frac{1}{\beta_{r}} \frac{\partial \beta_{r}}{\partial V_{tl}} \right)^{2} \\ \left(t_{ox} \frac{\partial V_{ts}}{\partial t_{ox}} \right)^{2} & \left(\frac{\partial V_{ts}}{\partial V_{fb}} \right)^{2} & \left(\mu_{0} \frac{\partial V_{ts}}{\partial \mu_{0}} \right)^{2} & \left(\frac{\partial V_{ts}}{\partial \Delta_{L}} \right)^{2} & \left(\frac{\partial V_{ts}}{\partial V_{tl}} \right)^{2} \\ \left(\frac{t_{ox}}{\delta_{x}} \frac{\partial I_{ss}}{\partial t_{ox}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial V_{fb}} \right)^{2} & \left(\mu_{0} \frac{\partial I_{ss}}{\partial \mu_{0}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial \Delta_{L}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial V_{tl}} \right)^{2} \\ \left(\frac{t_{ox}}{\delta_{sx}} \frac{\partial I_{ss}}{\partial t_{ox}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial V_{fb}} \right)^{2} & \left(\frac{\mu_{0}}{\delta_{ss}} \frac{\partial I_{ss}}{\partial \mu_{0}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial \Delta_{L}} \right)^{2} & \left(\frac{1}{\delta_{ss}} \frac{\partial I_{ss}}{\partial V_{tl}} \right)^{2} \\ \sigma_{dv_{tl}}^{2} \end{bmatrix}$$

Mixed FPV and BPV

Correlation for BSIM3: 10,000 Sample MC

	Tar	gets		BPV Model			MC from BPV Model (10 000)	
	μ	σ		μ	σ		μ	σ
$V^{\mathrm{p}}_{\mathrm{th0r}}$	0.531	0.0149	$V^{ m p}_{ m fb}$	-0.12	0.0148	$V^{\mathrm{p}}_{\mathrm{th}0\mathrm{r}}$	0.531	0.0147
$V^{\mathrm{p}}_{\mathrm{th}0\mathrm{s}}$	0.509	0.0166	$V_{ m tl}^{ m p}$	2.44	0.686	$V^{\mathrm{p}}_{\mathrm{th}0\mathrm{s}}$	0.509	0.0165
$eta_{0\mathrm{r}}^{\mathrm{p}}$	34.4	1.8%	$U^{\mathrm{p}}_{b\mathrm{ref}}$	1.16	1.1%	$eta_{0\mathrm{r}}^{\mathrm{p}}$	34.4	1.8%
$I_{\rm sats}^{\rm p}$	3.75	3.9%	$O^{\mathrm{p}}_{\mathrm{d}}$	0.14	0.011	$I_{ m sats}^{ m p}$	3.76	4.1%
$V_{ m th0r}^{ m n}$	0.496	0.0091	$V_{ m fb}^{ m n}$	-0.035	0.0088	$V_{ m th0r}^{ m n}$	0.496	0.0088
$V_{ m th0s}^{ m n}$	0.536	0.0100	$V_{ m tl}^{ m n}$	0.168	0.0007	$V_{ m th0s}^{ m n}$	0.536	0.0102
$eta_{0\mathrm{r}}^{\mathrm{n}}$	143.9	1.7%	$U_{b\mathrm{ref}}^{\mathrm{n}}$	0.984	1.04%	eta_{0r}^{n}	143.9	1.7%
$I_{\rm sats}^{\rm n}$	8.9	2.4%	O_d^n	0.007	0.008	$I_{\rm sats}^{\rm n}$	8.9	2.4%
$ ho(eta_{0r}^{p},eta_{0r}^{n})$	0.596		$C_{\rm d}$	0.04	0.017	$\rho(\beta_{0r}^{p},\beta_{0r}^{n})$	0.594	
$\rho(I_{\text{sats}}^{\text{p}}, I_{\text{sats}}^{\text{n}})$	0.718		t _{ox}	1.0*	1.43%	$\rho(I_{\text{sats}}^{\text{p}}, I_{\text{sats}}^{\text{n}})$	0.′	719

 t_{ox} is FPV

Wide/Short Saturated Drain Current PDFs

dashed: MC from BPV Model

solid: Measurements

Wide/Short Threshold Voltage PDFs

dashed: MC from BPV Model

solid: Measurements

Wide/Long Threshold Voltage, P vs. N

Wide/Long Gain Factor, P vs. N

solid lines: $\pm 1, 2, 3\sigma$ MC from BPV Model

+ Measurements

Wide/Short Threshold Voltage, P vs. N

Wide/Short Saturated Drain Current, P vs. N

- Poly CD and out-diffusion length already available as separate parameters
 - no need to add as equations
 - poly CD parameter made common to PMOS and NMOS
- Threshold voltage depends on V_{fb} , t_{ox} , N_{sub}
- Body effect depends on t_{ox} , N_{sub}
- V_{fb} , N_{sub} are separate for PMOS and NMOS
- t_{ox} is common between PMOS and NMOS
- Include body effect and correlation between V_{t0} of PMOS and NMOS as fitting quantities
 - extends analytic correlation analysis to general numerical procedure
 - enables statistics of t_{ox} to be determined from only dc data

Fitting Correlation Enables Extraction of *t_{ox}* Variation

Without Explicit Fitting of I_{dsat} Correlation

With Explicit Fitting of I_{dsat} Correlation

Same Formalism Applies to BJTs

Same Formalism Applies to Mismatch

Current Mirror Mismatch, 10µA

Same Formalism Applies to e_m from Circuits

- Goal is accurate modeling of variation of e_m of circuits
- In general e_m are from devices
 - models assumed to be reasonable
 - if device variations are modeled well, expectation is circuit variations will also be modeled well
- There is nothing in the BPV formalism that precludes some or all e_m from being circuit performances
- Added ring oscillator (RO) variations to the procedure
 - measured at same sites as dc data were measured
- Depends on both PMOS and NMOS devices

BPV Circuit Application: PSP for 0.18µm CMOS

Device (W/L, μm)	e _m	Description	p _i	Description		
Large (10/10)	V _{tr}	Threshold voltage for large device	тохо	Oxide thickness		
Short (10/0.2) // _{ds}	V _{ts}	Threshold voltage for short device	VFBO	Geometry-independent flatband voltage		
	I _{ds}	Saturation current for short device	VFBL	Length-dependent flatband voltage		
Narrow (0.24/10)	V_{tn}	Threshold voltage for narrow device				
			UO	Zero-field mobility		
V _t ر Small	$V_{\rm tm}$	Threshold voltage for small device		Channel length variation		
(0.24/0.2)	I _{dm}	Saturation current for small device	LAP			
RO	t _d	Gate delay for ring oscillators	WOT	Channel width variation		

BPV Sensitivity Matrix Structure (t_{ox} is FPV)

$$\begin{array}{l} \text{NMOS} \quad \left[\sigma_{e_N}^2 - \left(t_{ox} \frac{\partial e_N}{\partial t_{ox}} \right)^2 \sigma_{\frac{\partial t_{ox}}{t_{ox}}}^2 \\ \text{PMOS} \quad \left[\sigma_{e_P}^2 - \left(t_{ox} \frac{\partial e_P}{\partial t_{ox}} \right)^2 \sigma_{\frac{\partial t_{ox}}{t_{ox}}}^2 \\ \text{circuit} \quad \left[\sigma_{e_C}^2 - \left(t_{ox} \frac{\partial e_C}{\partial t_{ox}} \right)^2 \sigma_{\frac{\partial t_{ox}}{t_{ox}}}^2 \\ \end{array} \right] = \left[\begin{array}{c} \left[\frac{\partial e_N}{\partial p_N} \right]^2 & 0 \\ 0 & \left[\frac{\partial e_P}{\partial p_P} \right]^2 \\ \left[\frac{\partial e_C}{\partial p_N} \right]^2 & \left[\frac{\partial e_C}{\partial p_P} \right]^2 \\ \end{array} \right] \right] \\ \end{array}$$

MC Based on BPV Model

Addition of Extra e_m

- Fitting I_{ds} only did not lead to best fit of statistics of RO delay over V_{dd}
- Added drain current at additional V_{gs} biases as targets

Improved Modeling of RO Delay Variability over V_{dd}

- Local variation is inherent in all small devices
 - for "nominal" device characterization need median data
 - > otherwise $V_{t0}(L)$ can be modeling "noise"
 - > cannot average data in weak and moderate inversion
- In the past, $\sigma_{mm} << \sigma_{gl}$ so mismatch characterization could be done independently from global variation characterization
 - no longer the case
 - need to "correct" fab data: $\sigma_{gl}^2 = \sigma_{fab}^2 \sigma_{mm}^2$
- Sensitivity-based corner model generation
- Education of limitations of corner models
 - mixing global and local variation properly
- Statistical simulation needs to better leverage sensitivities
 - these can be calculated automatically from Verilog-A code

Summary

- BPV is cheating
 - fudges parameter statistics to force-fit device variations
 - choose targets wisely and this is exactly what is needed for design
- BPV works for both global and local statistical variations
 - targets differ, procedure does not
- Recent extensions to BPV
 - include CMOS circuit performances as targets
 > couples NMOS and PMOS statistical characterization
 - include more targets than minimum number
 - > gives improved modeling of $t_d(V_{dd})$
 - include skewness as a target
 - > allows fitting of nonlinear $e_m(p_i)$
 - include correlations as a target
 - > allows generic fitting of correlations with uncorrelated parameters

BPV References

- C. C. McAndrew, J. Bates, R. T. Ida, and P. Drennan, "Efficient Statistical BJT Modeling, why β is More that I_c/I_b," *Proc. IEEE BCTM*, pp. 28-31, Sep. 1997.
- C. C. McAndrew, "Statistical Circuit Modeling," SISPAD 1998, pp. 288-295.
- P. Drennan and C. C. McAndrew, "Understanding MOSFET Mismatch for Analog Design," *IEEE J. Solid-State Circuits*, vol. 38, no. 3, pp. 450-456, Mar. 2003.
- C. C. McAndrew, "Statistical Modeling for Circuit Simulation," Proc. IEEE ISQED, pp. 357-362, 2003.
- C. C. McAndrew and P. G. Drennan, "Device Correlation: Modeling using Uncorrelated Parameters, Characterization using Ratios and Differences," *Proc. NanoTech WCM*, pp. 698-702, 2006.
- X. Li, C. C. McAndrew, W. Wu, S. Chaudhry, J. Victory, and C. Gildenblat, "Statistical Modeling with the PSP MOSFET Model," *IEEE Trans. CAD.* vol. 28, no. 4, pp. 59-606, Apr. 2010.
- I. Stevanovic and C. C. McAndrew, "Quadratic Backward Propagation of Variance (QPBV) for Nonlinear Statistical Modeling," *IEEE Trans. CAD*, vol. 28, no. 9, pp. 1428-1432, Sep. 2009.
- I. Stevanovic, X. Li, C. C. McAndrew, K. R. Green, and G. Gildenblat, "Statistical modeling of interdevice correlations with BPV," *Solid-State Electronics*, 2010.
- C. C. McAndrew, "Statistical Modeling Using Backward Propagation of Variance (BPV)," in *Compact Modeling: Principles, Techniques and Applications*, G. Gildenblat (ed.), Springer, 2010.

- Detailed BPV relations incorporating nonlinearities, correlations, and FPV parameters were primarily developed by Ivica Stevanović
- BPV extension to incorporate correlation between electrical performances were primarily developed and implemented by Xin Li and Ivica Stevanović
- Some results presented here are from models generated by Ivica Stevanović, Xin Li, and Patrick Drennan