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Approaching Physical LimitsApproaching Physical Limits
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variations, reliability, manufacturability, ...
[S. Thompson, U. Florida]
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Increased Reliability ConcernsIncreased Reliability Concerns
 An inevitable result of aggressive scaling

– No convenient solution from CMOS technology!

Mechanical effects

Chemical effects

Temporal degradation (aging)

Thermal effects

D i l i i l

Static fluctuations

Temporal degradation (aging)

10-12s 10-8s 10-4s 100s 104s 108s

Dynamic electronic signals

[M. Kole, BMAS 2007]
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Intrinsic VariationsIntrinsic Variations
 Limited by fundamental physics; random in nature

 Representing the lower bound of variations

RTN Tox

+RDF + LER

 RDF, RTN, LER, Tox fluctuation, and their interactions!

 Approach: joint TCAD and compact modeling
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Process Induced VariationsProcess Induced Variations
 Induced by the manufacturing process; “systematic”

NRG HK/MGStress

WPE BEOLRTA

 Usually exhibit layout pattern dependence

WPE BEOLRTA

 Approach: Compact modeling and in-situ characterization 
under various process and design conditions
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Temporal Degradation (Aging)Temporal Degradation (Aging)
 Stressed by circuit operation; “systematic”
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 Depends on technology and operation conditions

 Approach: Compact modeling and in-situ characterization 
t d i d i it l lat device and circuit levels

[J. Hicks, Intel 2008]
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Compact Variability ModelingCompact Variability Modeling
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process variation

C

ModelingAggressive 
scaling

Modeling

 Turns “random” effects into systematic

 Prepares for design analysis and optimizationPrepares for design analysis and optimization
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[H. Aikawa, VLSI 2008]
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Predictive Variability ModelingPredictive Variability Modeling

 Process Variations in Light of Scaling

 Intrinsic and Manufacturing Variations

Threshold voltage variation– Threshold voltage variation

– Layout dependent effects

– Temporal degradation

F t M d li N d d P i Future Modeling Needs and Promises
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Variation Extraction: TransistorVariation Extraction: Transistor
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[W. Zhao, TSM 2009]
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Variation Extraction: SRAMVariation Extraction: SRAM

VDD (high)DD ( g )

VDD (low)

Measured DecomposedMeasured 
distribution of 

switching points 

Decomposed 
Vth variability

 Appropriate decomposition of as-fabricated SRAM variability 
helps shed light on joint process-design optimizationhelps shed light on joint process-design optimization
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Spatial Spatial CorrelationCorrelation
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 Spatial correlation is negligible in both directions (1250m X 
110m), which is different from previous generations

 Possible reason: regular layout; local random variation;Possible reason: regular layout; local random variation; 
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VVthth Variation: RDF Variation: RDF and LERand LER
 Length scale: nm; random

 Trend: NOT scaling down with the feature size
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[PTM; J. A. Croon, IEDM 2002]
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Gate Slicing MethodGate Slicing Method
 Approach: A SPICE-compatible gate-slicing method

 Gate slice with shorter length dominates the variation 
and the leakage
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[Y. Ye, DAC 2008]
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Limitations on the Slicing MethodLimitations on the Slicing Method
 Current distribution

– Fine for Ion if W >> L rc
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Modeling and Simulation ProcedureModeling and Simulation Procedure
 Starting point: A non-rectangular gate shape 

with σL due to LER and σVth due to RDF

1. Gate slicing at appropriate slice width

2. Assignment of random Vth to each slice 
depending on its W, L, and σVth

3. Sum the current together from each slice, 
then extract Vth variation from Ion 

4. Compute equivalent gate length for nominal 
I-V under non-rectangular gate (NRG) 

 Finish a statistical transistor model under 

- 17 -

RDF, LER and NRG

2010 Variability Characterization Workshop, Y. Cao                                     - 17 -



Validation with Atomistic SimulationsValidation with Atomistic Simulations
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[A. Asenov, TED 2003]
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Predictive ModelingPredictive Modeling
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Interaction with NRGInteraction with NRG
/ NRG
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Remaining QuestionsRemaining Questions

 The dependence on device area maintains during the scaling

 But the slope is larger than RDF only modelBut the slope is larger than RDF only model

 Ongoing: an integral atomistic simulation and modeling for 
RDF+RTN+LER+Tox for technology-design optimization

[K. J. Kuhn, IEDM 2007]
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Strain TechnologyStrain Technology
 Trend: strain is essential for scaled CMOS technology

– Higher channel doping concentration to define Vth

– But results in carrier mobility degradation
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Stress Induced VariationStress Induced Variation
 Length scale: ~100nm; layout dependent

 Approach: 
– Physical modeling of layout dependence

– Systematic layout decomposition for efficient extraction

Gate

S/D

- 23 -

[G. Eneman, TED 2006]
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Stress DistributionStress Distribution
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distribution in the channel
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Layout DependenceLayout Dependence
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levels in the piecewise-linear stress distribution
[C.-C. Wang, SISPAD 2009]
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Mobility EnhancementMobility Enhancement
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for PMOS device)

[S. E. Thompson, IEDM ’06; J.-S. Lim, EDL ‘04]

2010 Variability Characterization Workshop, Y. Cao                                     - 26 -



Equivalent Channel MobilityEquivalent Channel Mobility
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Similar to the form of Mathiessen s rule
[F. Payet, TED ‘08]
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Layout Dependent MobilityLayout Dependent Mobility
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∆µ increases as Lsd goes up because of more S/D stressor
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Threshold Voltage ReductionThreshold Voltage Reduction
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Impact on Gate DelayImpact on Gate Delay

Pattern A:
Weaker Pull-up
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*This example only considers eSiGe, without STI

 The full layout is decomposed into basic patterns

 Delay variation due to the stress effect is pronounced
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 Ongoing: systematic calibration with Silicon data
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Rapid Thermal AnnealingRapid Thermal Annealing
 Length scale: ~mm; layout pattern density dependent

 Approach: Joint TCAD-compact modeling efforts
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[Y. Ye, DAC 2009]
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Temporal Shift: NBTITemporal Shift: NBTI
 Time scale: hours to years, depending on PVT & activity

 Two steps: Reaction–Diffusion
– Other possible mechanisms involve fast interface traps

 Two phases: stress and recovery
 Approach: TCAD, modeling, and silicon characterization 
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ox
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[D. K. Schroder, MR 2007]
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Time and Technology DependenceTime and Technology Dependence
 Power-law dependence on time (t) – diffusion
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Modeling of Dynamic NBTIModeling of Dynamic NBTI
 A transistor with thicker tox recovers more than that 

of thinner tox

 Model is continuous at the boundary
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[W. Wang, CICC 2007]
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Parameter ExtractionParameter Extraction
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Decouple variations Extract the degradation Reliability 

 Only 5-6 model parameters need to be extracted

(Vth, L, , etc.) (Vth from Ileakage,  from Ilinear)
y

model 

Only 5 6 model parameters need to be extracted
 Reliability model is scalable with primary process and 

design parameters
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Decoupling from VariationsDecoupling from Variations

65nm 15.6%



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 The amount of temporal 
degradation is comparable 
to static variations

2010 Variability Characterization Workshop, Y. Cao                                     - 36 -



Brief Summary of VariationsBrief Summary of Variations
130nm 

2.34μm2
90nm 

1.0μm2
65nm 

0.57μm2
45nm 

0.346μm2

Sources: IBM Intel; picture size not to scaleSources: IBM, Intel; picture size not to scale

Statistical
Property

Spatial
Correlation Design SolutionProperty Correlation

Intrinsic 
Variations

Random 
( predictable) Weak (nm) Joint tech-design

optimization

Manufacturing
Variations “Systematic” Strong 

(100m to mm)
Modeling and design 

optimization

- 37 -

*Additional variations from dynamic operations, e.g., Vdd noise, NBTI, etc.
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Predictive Variability ModelingPredictive Variability Modeling

 Process Variations in Light of Scaling

 Intrinsic and Manufacturing Variations

 F t M d li N d d P i Future Modeling Needs and Promises
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Emerging Variation EffectsEmerging Variation Effects
 Toward random, discrete, atomistic variations

1/f RTN/

 Correlation among various mechanisms: e.g., TDDB + NBTI
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[A. J. Scholten, TED 2003; G. Ribes, IRPS 2008]



Model Efficiency and FlexibilityModel Efficiency and Flexibility
 Device modeling

– From corner based to 
statistical, and maybe hybrid

 Solution: hierarchical, module 
based modeling structure

statistical, and maybe hybrid

– But much heavier with too 
many instances

Variability Modulesy

Simple Device Model       
with Essential Physics

Standard Device Model
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[W. Grabinski, 2008]



Integration with Design PracticeIntegration with Design Practice
 Modeling and simulation tools enabling quantitative 

assessment during the design stage
 Support adaptive detection and protection scheme

– Predict statistical performance change
Detect critical units evaluate the overhead and optimize the solution– Detect critical units, evaluate the overhead, and optimize the solution

Protection Fli Fl Percentage
Area A 90nm Ethernet Controller

(20% slack) Flip-Flops Percentage
overhead

w/o aging 
analysis 1667 87 % 10%

I4

I3

I2

O1 y
w/ aging 
analysis 479 25 % 2%

I0

I2
I1

O2
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[ITC 2008]



Design for Design for Variability & ReliabilityVariability & Reliability
 “Germany began using it during WWII and it is cited as a 

reason for Japan’s current electronic dominance.” 

– B. E. Hegler, 1988

SystemTechnology Circuit System

Mechanical

El t i l

Technology

Process variations

L t ff t

Circuit

Bit-error rate

Ti i
Modeling & Modeling & 

Electrical

Thermal

Static

Layout effect

Hot-carrier injection

Bias-temperature 

Timing 

Data stability

Mismatch

Simulation 
tools

Simulation 
tools

Dynamic

Lifetime

p
instability

Oxide reliability

Soft errors

Gain

Noise
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Soft errors


