and Design Implications

Yu (Kevin) Cao

Nanoscale Integration and Modeling Group (NIMO), ASU

- Process Variations in Light of Scaling
- Intrinsic and Manufacturing Variations
- Future Modeling Needs and Promises

- Process Variations in Light of Scaling
- Intrinsic and Manufacturing Variations
- Future Modeling Needs and Promises

Approaching Physical Limits

 Many secondary effects are now critical: leakage, variations, reliability, manufacturability, ...

[S. Thompson, U. Florida]

Increased Reliability Concerns

- An inevitable result of aggressive scaling
 - No convenient solution from CMOS technology!

Intrinsic Variations

- Limited by fundamental physics; random in nature
- Representing the lower bound of variations

- RDF, RTN, LER, T_{ox} fluctuation, and their interactions!
- Approach: joint TCAD and compact modeling

Process Induced Variations

Induced by the manufacturing process; "systematic"

- Usually exhibit layout pattern dependence
- <u>Approach</u>: Compact modeling and in-situ characterization under various process and design conditions

Temporal Degradation (Aging)

Stressed by circuit operation; "systematic"

- Depends on technology and operation conditions
- <u>Approach</u>: Compact modeling and in-situ characterization at device and circuit levels

[J. Hicks, Intel 2008]

Compact Variability Modeling

- Turns "random" effects into systematic
- Prepares for design analysis and optimization

[H. Aikawa, VLSI 2008]

- Process Variations in Light of Scaling
- Intrinsic and Manufacturing Variations
 - Threshold voltage variation
 - Layout dependent effects
 - Temporal degradation
- Future Modeling Needs and Promises

Variation Extraction: Transistor

 Physical modeling helps accurate extraction and decomposition of leading variation sources

[W. Zhao, TSM 2009]

Variation Extraction: SRAM

 Appropriate decomposition of as-fabricated SRAM variability helps shed light on joint process-design optimization

Spatial Correlation

- Spatial correlation is negligible in both directions (1250µm X 110µm), which is different from previous generations
- Possible reason: regular layout; local random variation;

V_{th} Variation: RDF and LER

- Length scale: nm; random
- Trend: NOT scaling down with the feature size

[PTM; J. A. Croon, IEDM 2002]

Gate Slicing Method

- Approach: A SPICE-compatible gate-slicing method
- Gate slice with shorter length dominates the variation and the leakage

[Y. Ye, DAC 2008]

Limitations on the Slicing Method

- Current distribution
 - Fine for I_{on} if W >> L
- Slice width
 - ~nm
- Linearity
 - I_{ds} should be a linear function of V_{th}
 - Only I_{on} satisfies
 - I_{off} is not suitable

Modeling and Simulation Procedure

- Starting point: A non-rectangular gate shape with σ_L due to LER and σ_{Vth} due to RDF
- 1. Gate slicing at appropriate slice width
- 2. Assignment of random V_{th} to each slice depending on its W, L, and σ_{Vth}
- Sum the current together from each slice, then extract V_{th} variation from I_{on}
- 4. Compute equivalent gate length for nominalI-V under non-rectangular gate (NRG)
- → Finish a statistical transistor model under RDF, LER and NRG

Validation with Atomistic Simulations

- A roughly 65nm technology
- *I*_{on}-based simulation method accurately predicts the variability of both I_{on} and I_{off} under RDF
 - I_{off} -based extraction mis-predicts the distribution

[A. Asenov, TED 2003]

Predictive Modeling

$$\Delta V_{th} = \Delta V_{th0} + V_{ds} \exp\left(-\frac{L}{l'}\right) \cdot \frac{\Delta L}{l'}$$
$$\sigma_{total}^{2} = \sigma_{RDF}^{2} + \sigma_{NRG}^{2} \qquad \Box$$

$$\sigma_{total}^{2} = \frac{C_{1}}{WL} + \frac{C_{2}V_{dd}^{2}}{\exp(2L/l')} \cdot \frac{W_{c}}{W} \cdot \sigma_{L}^{2}$$

Interaction with NRG

- NRG impacts nominal I-V and V_{th} variance
- But narrow-width effect only affects the nominal behavior, not the variability
- Question: is rectangular gate the optimal shape? How to simulate?

2010 Variability Characterization Workshop, Y. Cao

Remaining Questions

- The dependence on device area maintains during the scaling
- But the slope is larger than RDF only model
- <u>Ongoing</u>: an integral atomistic simulation and modeling for RDF+RTN+LER+T_{ox} for technology-design optimization

[K. J. Kuhn, IEDM 2007]

Strain Technology

- Trend: strain is essential for scaled CMOS technology
 - Higher channel doping concentration to define V_{th}
 - But results in carrier mobility degradation

Stress Induced Variation

- Length scale: ~100nm; layout dependent
- Approach:
 - Physical modeling of layout dependence
 - Systematic layout decomposition for efficient extraction

[G. Eneman, TED 2006]

Stress Distribution

- The stress is induced from both ends of the channel in eSiGe
- Piecewise linear approximation for the non-uniform stress distribution in the channel

Layout Dependence

 The layout dependence is captured by the peak and bottom stress levels in the piecewise-linear stress distribution

[C.-C. Wang, SISPAD 2009]

Mobility Enhancement

(Deformation Potential Theory for PMOS device)

$$\mu_{ii}^{n} = \mu_{n}^{0} \left[1 + \frac{1 - m_{n1}/m_{nt}}{1 + 2(m_{n1}/m_{nt})} \left(\exp\left(\frac{\Delta E_{\rm C} - \Delta E_{\rm C, i}}{kT}\right) - 1 \right) \right]$$

$$\mu^{p} = \mu_{p}^{0} \left[1 + \left(\frac{\mu_{p1}^{0}}{\mu_{p}^{0}} - 1\right) \frac{(m_{p1}/m_{ph})^{1.5}}{1 + (m_{p1}/m_{ph})^{1.5}} \left(\exp\left(\frac{\Delta E_{\rm V,1} - \Delta E_{\rm V,h}}{kT}\right) - 1 \right) \right]$$

B= -0.3588 for electrons B= 0.2815 for holes

(Band splitting based model)

P= 3.9456E-2 (eV/GPa) for uniaxial stress

P: Energy splitting per GPa

[S. E. Thompson, IEDM '06; J.-S. Lim, EDL '04]

Equivalent Channel Mobility

Similar to the form of Mathiessen's rule

[F. Payet, TED '08]

Layout Dependent Mobility

- Δµ increases as L goes down because of higher stress
- Δµ increases as L_{sd} goes up because of more S/D stressor

Threshold Voltage Reduction

- V_{th} shift becomes larger at shorter channel length
- DIBL and sub-V_{th} swing is relatively insensitive to the stress effect

Impact on Gate Delay

*This example only considers eSiGe, without STI

- The full layout is decomposed into basic patterns
- Delay variation due to the stress effect is pronounced
- Ongoing: systematic calibration with Silicon data

Rapid Thermal Annealing

- Length scale: ~mm; layout pattern density dependent
- Approach: Joint TCAD-compact modeling efforts

Temporal Shift: NBTI

- Time scale: hours to years, depending on PVT & activity
- Two steps: Reaction–Diffusion
 - Other possible mechanisms involve fast interface traps
- Two phases: stress and recovery
- Approach: TCAD, modeling, and silicon characterization

2010 Variability Characterization Workshop, Y. Cao

Time and Technology Dependence

Power-law dependence on time (t) – diffusion

$$N_{it} = Kt^{n} + \delta \qquad \Delta V_{th} = \frac{qN_{it}}{C_{ox}}$$

n is 0.1~0.3 (e.g., 0.16 for H₂)

Dependences on voltages, temperature, and oxide thickness – reaction

$$K = A \cdot \sqrt{C_{ox}(V_{gs} - V_{th})} \cdot \exp\left(\frac{E_{ox}}{E_0}\right) \cdot \exp\left(-\frac{E_a}{kT}\right)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Hole Electric field Temperature density dependence dependence

Modeling of Dynamic NBTI

- A transistor with thicker t_{ox} recovers more than that of thinner t_{ox}
- Model is continuous at the boundary

90nm, V_{as} = -1.2V, IEDM 2005

[W. Wang, CICC 2007]

Parameter Extraction

- Only 5-6 model parameters need to be extracted
- Reliability model is scalable with primary process and design parameters

Decoupling from Variations

Device	$\Delta V^*_{th}~(\%)$	$\Delta V_{th} @ t = 10^5 s$					
	t=0 s	Data* (%)	$Model^*$ (%)	ModelError (%)		%)	
1	12.03	5.43	5.50		1.29		
2	2.85	3.51	3.66		4.27		
3	-6.75	8.02	8.23		2.62		
4	-8.14	18.26	18.37		0.60		

*: Normalized to the mean value of the threshold voltage (t=0) for the four devices.

$$\Delta V_{th} \propto \exp\left(\frac{E_{ox}}{E_0}\right) = \exp\left(\frac{V_{gs}}{T_{ox} \cdot E_0}\right)$$

 The amount of temporal degradation is comparable to static variations

Brief Summary of Variations

130nm 2.34µm²

65nm 0.57μm²

45nm

and the second second		A ANTIC ST	No. Constant	1.14	1.000
		Ref Str		968 M	CRAN
P. S. Start	194	Tables 21	The Sh	Right	
					1
Service States				2016	

Sources: IBM, Intel; picture size not to scale

	Statistical Property	Spatial Correlation	Design Solution
Intrinsic Variations	Random (σ predictable)	Weak (nm)	Joint tech-design optimization
Manufacturing Variations	"Systematic"	Strong (100µm to mm)	Modeling and design optimization

*Additional variations from dynamic operations, e.g., V_{dd} noise, NBTI, etc.

- Process Variations in Light of Scaling
- Intrinsic and Manufacturing Variations
- Future Modeling Needs and Promises

Emerging Variation Effects

Toward random, discrete, atomistic variations

Δldsat-Δldsat@1rstBD(% AV t-AV t@ 1rst BD (mV) 25 20 2 15 10 10.5 10^{-4} 10-33 **10**-6 10-3 10-7 10-5 10-4 10-6 ∆lgate after BD (A) ∆lgate after BD (A) [A. J. Scholten, TED 2003; G. Ribes, IRPS 2008]

Model Efficiency and Flexibility

BSIM4v4

SP EKV3.01

EKV3.0

BSIM3₁

BSIM3v1

EKV

1990

Years

MUIC

EKV2.6

Including L,W,P scaling

2000

Without scaling

- Device modeling
 - From corner based to statistical, and maybe hybrid
 - But much heavier with too many instances

HSP28

LEVEL2

LEVEL3

198D

earwEKV

1970

LEVEL

 Solution: hierarchical, module based modeling structure

1000

100

1960

No. of Model Parameters

Integration with Design Practice

- Modeling and simulation tools enabling quantitative assessment during the design stage
- Support adaptive detection and protection scheme
 - Predict statistical performance change
 - Detect critical units, evaluate the overhead, and optimize the solution

A 90nm Ethernet Controller	Protection (20% slack)	Flip-Flops	Percentage	Area overhead
	w/o aging analysis	1667	87 %	10%
	w/ aging analysis	479	25 %	2%

[ITC 2008]

Design for Variability & Reliability

 "Germany began using it during WWII and it is cited as a reason for Japan's current electronic dominance."

```
– B. E. Hegler, 1988
```


