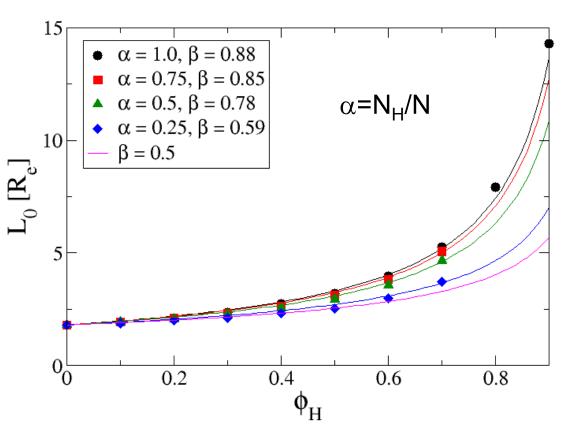
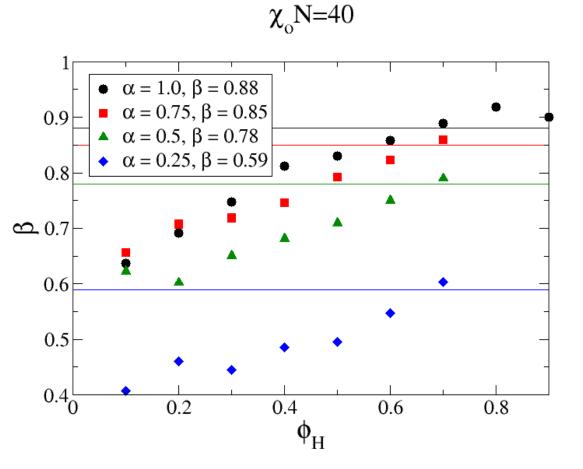
Control of characteristic period, range of interpolation, and defects through homopolymer addition

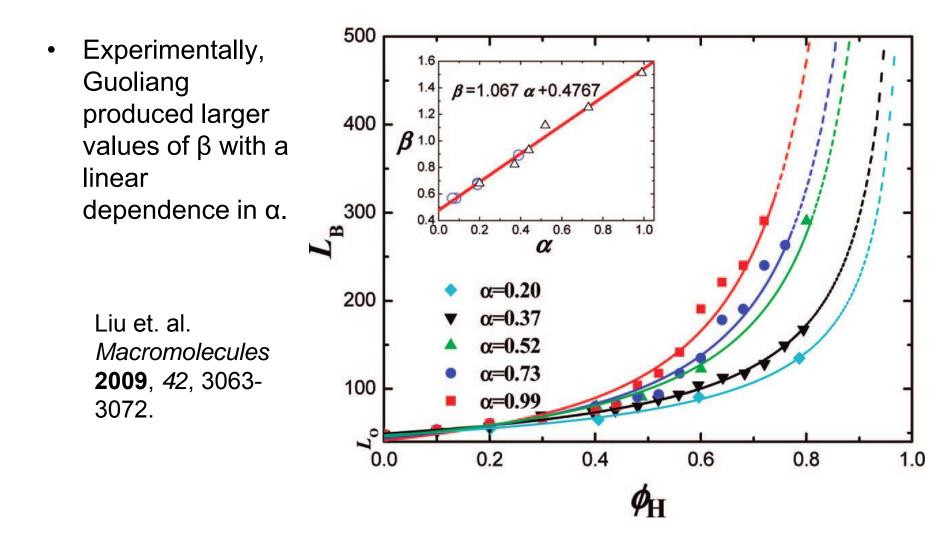

Darin Pike, Guoliang Liu, Paul Nealey, Juan de Pablo

Ternary Mixtures, Optimal Period

- The diblock copolymer can be swollen by each homopolymer, increasing the period.
- The swelling can be fitted to the equation

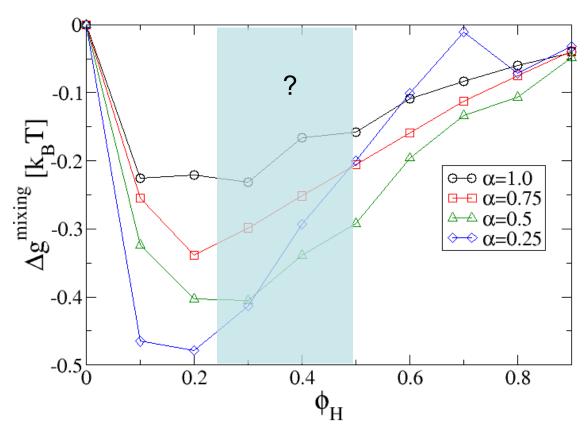

$$L_{0}(\phi_{\rm H}) = \frac{L_{0}(\phi_{\rm H} = 0)}{(1 - \phi_{\rm H})^{\beta}}$$

 $\chi_0 N=40$



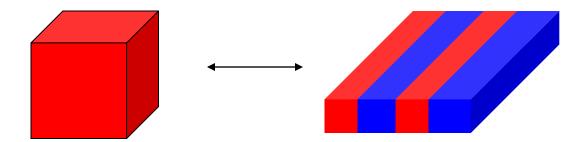
Values of β

- The value of β drifts as the lamellae become more swollen with homopolymers.
- The curves on the preceding slide use the β values at around $\phi_{\rm H}$ = 0.7.


Experimental Results

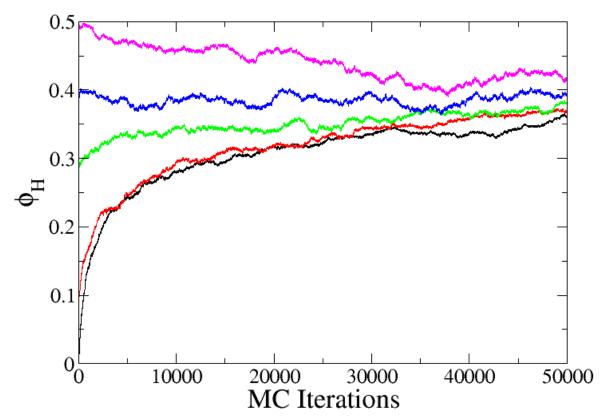
Energy of Mixing

 $\chi_0 N=40$


- Free energy of • mixing can be determined from Monte Carlo simulations.
- This value, along • with interfacial energy and surface energy, can be used to determine where defect free structures are possible.

? First order transition ?

Optimal Swelling with Gibbs ensemble


- To determine the ideal swelling of the lamellae with homopolymers, a Gibbs ensemble simulation is run.
- One simulation box is lamellae, the other is A-rich. The A-rich simulation box doubles as a B-rich simulation box.

Optimal Swelling with Gibbs ensemble

 Optimally, the lamellae is swollen with a volume fraction of 0.39 homopolymers when all chains are the same length.

 χ_0 N=40, α =N_A/N_{AB}=N_B/N_{AB}=1.0, Gibbs ensemble

Comparing chemical potential

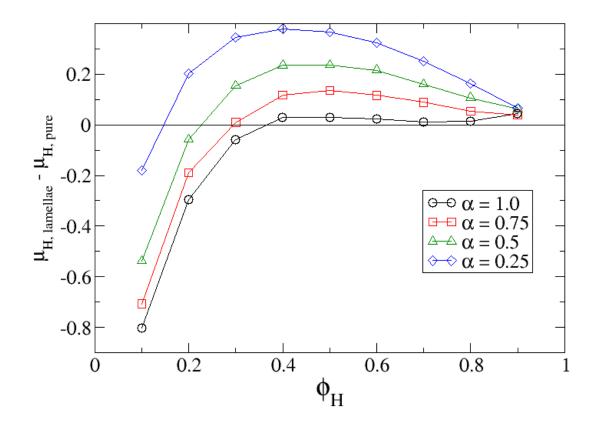
			Lamellar phase	A-rich phase
•	µ ^{ex} includes	µ ^{ex} of copolymer	47.6	47.8
	the ideal	µ ^{ex} of A polymer	43.3	43.3
	mixing term.	µ ^{ex} of B polymer	43.3	-

- The average volume fraction of copolymers in the A-rich phase is 2.1*10⁻⁵. The error in this value may be up to 20%, so it is close enough to 1.8*10⁻⁵, the value that gives μ^{ex}=47.6.
- For µ^{ex} of the B homopolymer to match in the 2 phases listed above, the volume fraction in the A-rich phase must be 8.3*10⁻¹⁴. In the Monte Carlo simulation, there is never a B homopolymer in the A-rich phase. The simulation would need to be run over 100 years before a B homopolymer ends up in the A-rich phase.

Comparing to SCFT

• The ideal MC volume fractions in the A-rich phase (from chemical potential calculations) match closely with the SCFT:

A-rich	MC, χ _o N=40,	SCFT,	SCFT,
phase	χN=32.8	χN=30	χN=35
φ _{copolymer}	1.8*10 ⁻⁵	2.7*10 ⁻⁵	3.0*10 ⁻⁶
$\phi_{\rm B\ homopolymer}$	8.3*10 ⁻¹⁴	9.4*10 ⁻¹⁴	6.3*10 ⁻¹⁶


• The SCFT predicts slightly less homopolymers in the lamellar phase:

Lamellar	MC, χ _o N=40,	SCFT,	SCFT,
phase	χN=32.8	χN=30	χN=35
$\phi_{homopolymers}$	0.39	0.36	0.34

Optimal Period

- The A-rich phase is almost pure A.
- Thus, the maximally swollen lamallae can be approximated by equating the chemical potential of the homopolymers in the pure phase with that in the lamallae.
- I will verify this trend with Gibbs ensemble, as it is opposite to what is expected.

$$\chi_0 N = 40$$

