# Plasmonic Surface Made with Nanoimprint Lithography with Block Copolymer Mold

Jack Skinner<sup>a</sup>, Elaine Yang<sup>a</sup>, Peter Yang<sup>a</sup>, Chip Steinhaus<sup>a</sup>, Charlie Liu<sup>b</sup>, and Paul Nealey<sup>b</sup>

<sup>a</sup>Sandia National Laboratories

<sup>b</sup>University of Wisconsin



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



### Goals

- Use self-assembled block copolymers (BCPs) to create a nanoimprint lithography (NIL) mold. Completed
- Create plasmonic surface with BCP-patterned NIL mold. –
   Completed
- Create a NIL mold with long range order of the BCPs via prepatterning of the brush with interference lithography (IL). Ongoing
- Reproduce features as a demonstration of combined IL/BCP/NIL nanofabrication. Ongoing





#### **Fabrication of Patterned Nanodots**



Si Substrate





(2) Imprint of Template into PMMA







(3) Metal Deposition and Liftoff









## Initial Results – Sparse Area Patterns

 Only small areas successfully lifted off, probably due to metal lock-in





PMMA Thickness Before Etch: PMMA Thickness After Etch: Metal Thickness (Cr/Au): 60 nm 27 nm

1.2/5.2 nm = 6.4 nm total





### **Improved Results – Large Area Patterns**

• Etch time increased, metal thickness decreased to yield fullchip pattern transfer



PMMA Thickness Before Etch: 47 nm
PMMA Thickness After Etch: 23 nm

Metal Thickness (Cr/Au): 1.3/3.8 nm = 5.1 nm total





# Summary and Conclusion

- Fabrication process improved to yield full-chip pattern transfer
- Abstract accepted to EIPBN 2010





### Future Work

- Imprint on oxide substrates for improved SERS performance
- Analysis of plasmonic response using different metals (Au, Ag,
   Pt) and different metal thicknesses
- Fabrication of integrated device: Coupling of localized surface plasmon and delocalized surface plasmon effects
- Fabrication of template for nanowire growth



