qctconnect.com

QUALCOMM CONFIDENTIAL AND PROPRIETARY

REDEFINING MOBILITY

QUALCOMM CDMA Technologies

3D <u>Through Si</u> Stacking Technology

- an IFM Perspective -

<u>Outline</u>

- Perspective from an IFM (Integrated Fabless Manufacturer)
 - Must bring up the Whole Supply Chain

- Focus on Differentiated Design vs. Differentiated Process
- Perspectives on Present & Near Future Opportunities (1 to 3 years)
- Perspectives on Future Opportunities (3 years +)

Why 3D

- Multiple 3D Stacking Technologies:
 - Wire Bond based (die-on-die, PiP. ...)
 - Interposer based (side-by-side or stacked)
 - <u>Through</u> <u>S</u>i Via <u>S</u>tacking (TSS)
 - Via First / Middle / Last Technology
 - 2 or more die (stacked or side-by-side)
- All 3D Technologies Provide :
 - Better form factor (vs. multiple 2D die)
 - Better performance (vs. driving off chip)
 - Higher Flexibility (vs. single chip SoC)
- High Density TSS Integration Provides:
 - Better Architectures (vs. 2D SoC + PCB Integration)
 - Comparable Cost Structure (at System Level)
 - As Enabled by High Aspect Ratio $\mathrm{TSV}_{\mathrm{middle}}$
 - e.g. Wide IO Memory on Logic (+ 3D TSS)
 - Best of All Worlds
 - 3D "Packaging Technology" Benefits
 » Superior Form Factor and Power (vs. driving off chip)
 - 3D "Integration Technology" Benefits
 » Superior Bandwidth Efficiency (vs. LPDDRx or Serial)

PAGE 3

Which 3D Through Si Stacking (TSS)

For High End Smart Phone App

- In Technical Space
 - Form Factor vs. Interposer
 - Power vs. LPDDRx
 - Risk vs. Cu-Cu, etc..
- In Business Space
 - Market Growth drives Volume
 - Growths justifies ROI
 - Volume drives Costs
 - Cost Drives Adoption

Target Implementation ~2013

Tilted 3D X-ray

What is Different about 3D TSS Technology ?

- 3D Core Value Propositions
 - Power Performance
 - Form Factor
 - Modularity & Flexibility
- 3D Challenges & Opportunities
 - New Degrees of Freedom
 - New Partitioning Choices
 - New Integration Choices
 - Stack Architecture Choices
 - Many Technology Choices
 - TSV Process Flow Choices
 - Die to Die Proximity
 - Electrical Interactions
 - Thermal Interactions
 - Mechanical Stress Interactions

Eco-System for 3D Design

- Segment Design Eco-System into 3 Buckets to Address 3 Key Challenges
- Design Authoring actual chip design
 - Implement Design via (mostly) Traditional 2D Chip Design Flow (RTL2GDS))
 - Output GDS
- PathFinding design/technology concept exploration
 - Manage Choices via Cheap, Quick & Dirty Concept Design
 - **Output Clean Specs**
- TechTuning physical space exploration
 - Manage Interactions via Cheap, Thermal & Mechanical Chip Simulation
 - **Output Clean Constraints**

Strategy

PAGE 7

QUALCOMM CONFIDENTIAL AND PROPRIETARY

Managing Choices: What Does It Mean for TSS Design?

Strategy Managing Interactions: What Does It Mean for TSS Design?

PAGE 8

Strategy Managing Costs : What Does It Mean for TSS Design?

- Expect Gradual and Graceful Evolution
 - Process and Design together and in synch
 - Sensitive to the HUGE invest
 - Applications 5
- Now : Heterogeneous Stacking
 - .g. M NEED RELATIVELY MINOR UPGRADES TO THE DESIGN FLOW & TOOLS FOR MEMORY on LOGIC

CDMA Technologies

- Next Integrated Stack Designs
 - e.g. Logic and

PAGE 9

- Design Method logy Requirem 16
 - Integrated Co-Design
 - System Level (aka PathFinding)
 - Design Authoring including the Package
 - Manufacturability (aka TechTunung)

Evolution from 2D Design

SIGRITY

Apache

hnology

ing .ogic

<u>sign</u>

le die sign later

time

cādence

Requirements for Heterogeneous Stack Design (now)

<u>Standards</u>

- "Design Exchange Formats"
- Model Formats
- Manufacturing Hand Off & Inspection Standards

TechTuning Methodology

- Methodology
- Models & Material Properties
- Infrastructure

Design Authoring Corner Methodology

- Thermal & Mechanical Simulation Capability
- Integration of Interactions (esp. Thermal & Mechanical) into Design Environment

<u>Others</u>

- ESD Protection for Tier-to-Tier pins
- Reliability Landscape

Current TSS Driver

Standards Standardization : Best Opportunity to Bring Down Barriers

Technical Area		Driver	Stds Body	
D2D layout compatibility	Bump Layout	Die Supplier	JEDEC	
	Bump Array Layout			
	Bump Assignment			
PDK modeling compatibility	Electrical model format	GSA &	Si2	
	Thermal model format	SEMATECH		
	Stress model format	Sematech		
Design design data base compatibility	PF Exchange Formats	IMEC		
	Stress Exchange Formats	EDA	Si2	
	Temp Exchange Formats	EDA		
	PDN Exchange Format	EDA		
	SI Exchange Format	EDA		
	DFT Exchange Formats	IMEC	IEEE	
als ^{al}	Metallurgy pairs		Sematech	
lateria Inpatib	Max dT SoA	Sematech		
Ma Som ∠	Reliability SoA			
QA Incoming specs	Metrology (e.g. Warpage)	Sematech	JEDEC	
	Die/wafer QA metrics	SEMI		
	Shipping Carrier specs –	Sematech	SEMI	
FIC Hand	In-Assembly ESD	OSAT	ANSI/ESDA	
St T & Fest	KGD / pre-Bond test	IMEC	IEEE	
Te DFI H	Probe Cards	IMEC		

PAGE 11 QUALCOMM CONFIDENTIAL AND PROPRIETARY

TechTuning Thermal : Everything Changes ...

- If We Did Not Have a Thermal Problem Now, Will We Have One in the Future ... The World has Changed
- Mobile power densities approaching CPU
- Thermal Considerations Constraining System Design

	Past	Future		
Reality	Excess Margin	Negative Margin		
Diagnostics	 Fixed Arbitrary 	Reference System		
Diagnostics	Steady State (dc)	Transient (ac)		
	WC Spec	Realistic Spec		
Design	 System Lvl Sensing 	On Chip Sensing		
	Performance / Power	• + Design for Thermal		

- Must Manage Hot Spots
- Must Manage Overall System Thermal Limit

TechTuning Mechanical Stress: a "Perfect Storm"

TechTuning Thermal/Stress Simulation Requirements = TechTuning

Simulators

- Software tool(s) and Simulation Methodologies
- Models
 - FEA and/or Compact Behavioral models
 - Absolute vs. values relative to some reference point ?
 - Modeling of individual layers vs. smear a stack of layers ?
- Data
 - Material Properties
 - FEOL, BEOL, RDL, uBump, FC Bump, Underfil, Substrate..
 - Young's Modulus, Poisson's ratio, TCE, Stress Free T..
 - Thermal Conductivity
 - Geometric Properties
- Standards
 - Model Formats
 - Exchange Formats (Handoff among Tools)
 - Metrology Systems & Definitions
 - Calibration QA Methodology
 - Validation QA Methodology
- Use Flow
 - Use Environment QA Methodology

TechTuning Status : Stress Simulation Methodology

PAGE 15

Corners Concern w/ Managing Interactions & Variability

- Old Sources of Variability & Variability Concerns
 - '2D Variability" i.e. all the usual P-V-T Variability
- New Sources of Variability : 3D Tier to Tier Interactions
 - Variability induced by Electrical Interactions
 - Variability induced by Thermal Gradients
 - Variability induced by Mechanical Stress
- Design Authoring: Do One Die at a Time <u>But Analyze the Whole Stack</u>
 - e.g. For Power and Signal Integrity and/or Thermal & Stress Interactions

Corners Variability Caused by Interactions : the Problem

Concerns :

- Thermal Hot Spots and Thermal Gradient
- Stress "Hot Spot" and Stress Gradient
- Power & Signal Integrity issues
- May induce unique & incremental failure modes
 - e.g. mismatch (in analog, memories, differential circuits..)
 - e.g. race conditions (in set up and hold circuits ..)
- Not addressed by any of the current design flows
- Also a Source of Excess Margin in 2D SoC Designs
- Especially for Advanced 3D Stacked SoC Designs
 - Performance & Functionality Pushing Electrical Limits
 - Form Factor Pushing Physical & Material Limits
 - Temperature Range across a die > 10°C quite possible,
 - Local Stress Mobility Variations > 10% quite possible
 - Si/PI issues above the norm for 2D die quite possible
- Especially When Induced by an External Source
 - e.g. when caused by interaction with another die in a stack
 - cannot be identified during die characterization and sort test,
 - Failure mode very difficult to de-bug => low risk / hi liability
- Clearly Key and Fundamental Consideration for 3D Stack Design

Corners Thermal Variability : Design & Validation Solution ?

- Design Requirements : Address Thermal & Stress Gradients in Design
 - Methodology, Tools, Flows, Standards, Models, Practices...
- Need it to be Minimally Invasive to Today's Flows
 - Best Addressed as a <u>New Source of Variability</u> in Existing Flow ?

- Simulate Temperature / Stress Profile on Each Die in a Stack
- Import Temp / Stress Profile of All Die in a Stack
- Superimpose Temp / Stress Gradient on Timing Flow
- Validation Requirements : Thermal/Stress Calibration + Timing Validation
 - Validate Thermal Simulator vs Test Chip Si ?
 - Characterize Sensitivity of Each Die and Define Safe Op. Area ? and
- and/or and/or

- Characterize Thermal Interactions post-Stack ?
 - -DFT Challenge and/or Induce Thermal Gradients Some Other Way ?

Others Incremental Short Term Opportunities ?

3D Reliability

- Taxonomy of the Incremental 3D Failure Mechanisms
 - Especially in addition to the stress issues (Stress Workshop in flight)
- Failure Modes, Mechanisms, Models, Test Structures, Test Environments ...
- 3D Product Qualification Requirements
- SRC RFP in flight
- ESD die to die discharge during stacking processes
 - i.e. how much protection is required for pins that only face other tiers ?
 - Why is it not 0V & How can it be Driven
 - Discharge modes and charge sources
 - Measurements and process controls
 - Feels a bit like an orphan problem

Qualcomm Advanced Technology 3D Stacking Roadmap

PAGE 20 QUALCOMM CONFIDENTIAL AND PROPRIETARY

Need a Killer App : the Driver

- Beyond Wide IO Memory-on-Logic
- Key Research Opportunities
 - Ideas for Candidate Solutions
 - Infrastructure for Value Proposition Studies & Value Proposition Studies
 - Multi Domain : Performance, Therman Electrica

CDMA Technologies

Design Domain Challenges

PAGE 22 QUALCOMM CONFIDENTIAL AND PROPRIETARY

Design Domain Challenges

PAGE 23 QUALCOMM CONFIDENTIAL AND PROPRIETARY

qctconnect.com

UALCOMM

CDMA Technologies

QUALCOMM CONFIDENTIAL AND PROPRIETARY

REDEFINING MOBILITY QUALOWN

THANK YOU

RikoR

1Q11