
### High Performance Processing Systems Enabled by 3D Integration

Bob Conn May 5, 2011



Bob Conn, RTI International, <u>rconn@rti.org</u>, bobconn@ieee.org





### 3D HPC - Big Issues

- Design and Architecture
- Fab
- Interconnect
- Bandwidth
- Power and Cooling
- Assembly and Rework
- Testing
- Reliability
- Cost
- Supply Chain



# 3D HPC Issues – some detail

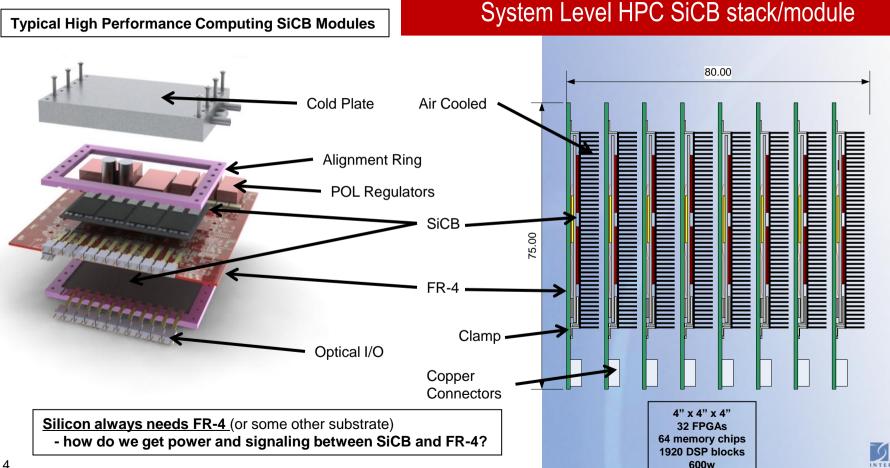
#### - Design and Architecture

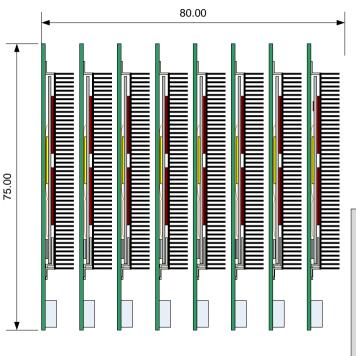
- 3D silicon circuit boards are a new paradigm not quite our friendly FR-4 but easier access than ICs. Needs new tools.
- Ease of design
- End of packaged ASICs, rise of MOSIS and silicon circuit boards
- IC designers or PCB designers?
- Large area silicon circuit boards greater than 5cm x 5cm
- Fab
  - The TSV bandwidth problem
- Interconnect
  - How to get off of silicon
  - Mechanical connectors and silicon
  - Wire bonding
  - Bumps, pillars, posts, etc.
  - Conductive elastomer
  - Nanotube forests!
  - Flexible cable
  - Optical connectors
  - Free-space laser optical ideal , no connector at all!
  - Near field RF

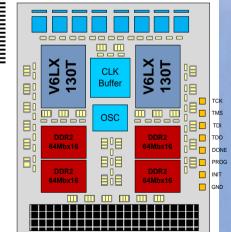
#### Bandwidth

- TSVs must work at 10+GHz
- Devices must move from 1000 I/O to 100,000 I/O or equivalent bandwidth
- Integrated optical grading
- Integrated optical

#### A closer look at 3D HPC issues


#### Power and Cooling

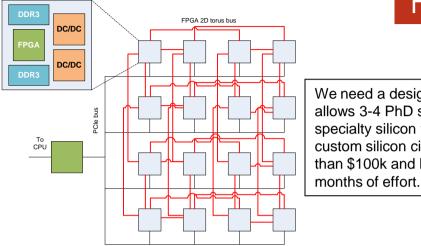

- How to get 200 amps into a silicon stack
- Not much sense in exotic cooling it's too big.
- pJ/signal
- Integrated power
  - Better energy storage high Q inductors and transformers
- Next gen will have commercial bare die with TSVs. One side is for power and the other for signals.
- 100x reduction for core power and I/O power


#### Assembly and Rework

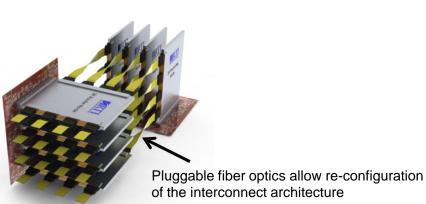
- Cheap MOSIS
- Top and bottom die attach
- Bare die sources
- Indium, self-reflow
- Conductive elastomers
- Nanotube forests
- Testing
  - Bare die testing
- Reliability
  - What does one do with lost computational blocks or partial memory
- Cost
  - Comparable to exotic PCB prototypes today
- Supply Chain
  - Where are the bare die?
  - Where are the second sources?
  - Where are stacked die?











# High Density DSP Design Concept

- Scalable DSP system using Silicon Circuit Boards
- System design objectives:
  - Equivalent volume of a softball ~ 10x10x10 cm<sup>3</sup>
    - 8 PCBs with SiCBs and DC conversion
  - Power consumption 600 watts
    - Air cooled @ limit
- SiCB based DSP module
  - 4 Xilinx V6LX 130T DSP bare die
    - 1920 DSP blocks total, 500 MHz clock
    - 2X DSP density with V6SX part
  - 8 GB of DDR2
  - External IO via PCIe
- Controller: COTS CPU with Linux OS





We need a design system that allows 3-4 PhD students to design specialty silicon that connects to a custom silicon circuit board for less than \$100k and less than 3 – 4



# HPC Design and Architecture

- New systems level architectures
  - Increased I/O how do we get on and off the SiCB?
  - The Cooling and Power Problem
  - Torus, mesh, hypercube, linear string, etc.
  - Fast turn ASICs with TSVs and 1000s of I/O

#### Ease of Design

- 3D silicon is a new paradigm not quite our friendly FR-4 but easier access than ICs. Needs new tools.
- End of packaged ASICs, rise of MOSIS and silicon circuit boards
- IC designers or PCB designers?
- Large area silicon circuit boards greater than 5cm x 5cm – are needed



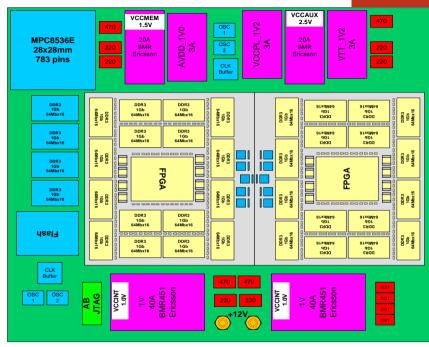
- We need some uniformity across the set of 8" fabs
- Lower cost TSVs
- Large area silicon circuit boards (>4" on a side)
- Embedded passives
- n-layers of copper
- 4 microns extending to 10 microns thick copper
- Futures embedded optical and transistors

 I've avoided Fab details as many folks are working in this area.

|                                   | Today                 | 5 years                | 10 years               |                                                    |  |  |           |             |
|-----------------------------------|-----------------------|------------------------|------------------------|----------------------------------------------------|--|--|-----------|-------------|
| Silicon Size                      | 5cm x 5cm             | 10cm x 10cm            | full wafer             |                                                    |  |  |           |             |
| Silicon thickness                 | 100µ to 500µ          | 60u to 500µ            |                        | P 20                                               |  |  |           |             |
| Copper layers                     | 5                     | 8                      | 10                     | how many do we need?                               |  |  |           |             |
| Copper thickess                   | 1μ to 4μ              | 1µ to 6µ               | 1µ to 10µ              | thicker is better for power                        |  |  |           |             |
| Carrier substrate                 | FR-4, teflon, ceramic | FR-4, teflon, organics | FR-4, teflon, organics |                                                    |  |  |           |             |
| TSVs                              | 8:1                   | 12:1                   | 16:1                   |                                                    |  |  |           |             |
| alignment                         | 1μ                    | 0.7μ                   | 0.2μ                   |                                                    |  |  |           |             |
| min line/space                    | 5μ/4μ                 | 4μ/3μ                  | 3μ/2μ                  | no need for smaller - too much I*R loss            |  |  |           |             |
| Internal pad pitch Cu-Cu, Cu-SnCu | 20μ                   | 10μ                    | 10μ                    | no need for I/O pad to be smaller than transistors |  |  | ansistors |             |
| External ball/bump pad pitch      | 0.5mm                 | 0.3mm                  | 0.1mm                  |                                                    |  |  |           |             |
| via diameter                      | 8μ                    | 4μ                     | 2μ                     |                                                    |  |  |           |             |
| embedded passives                 | barely                | R, L, C                | 2x improvement         | sooner is better                                   |  |  |           |             |
| embedded power regulators         | none                  | local POL              | fully embedded regulat | ors                                                |  |  |           |             |
| embedded optical                  | none                  | some                   | fully embedded optica  |                                                    |  |  |           | TODT        |
| 7                                 |                       |                        |                        |                                                    |  |  |           | INTERNATION |



### The Cooling and Power Problem


- Traditional HPC Systems can be considered as 3 separate volumes: Power generation, cooling, electronics
- Each of these takes approximately 1/3 of the volume inside a 19" rack:
- 1/3 Power Generation
  - Power generation from AC power in to distributed DC
  - Local power regulation on individual PCBs
- 1/3 Cooling
  - Air flow volume
  - Heat sinks
  - Fans
  - Ducts
  - Plumbing
- 1/3 Electronics
  - PCBs
  - Connectors
  - Components

# If we shrink the electronics to zero our system is 2/3 of it's original size!

- Cooling and power need to shrink!
  - we must have lower power components!
  - 5 years cooling and power volume less than half of today's for a given wattage.
  - 10 years cooling and power volumes less than 10% of today's.
- How to get 200 amps at 1.0v +/- 50mV into a silicon stack
- Not much sense in exotic cooling it's too big.
- pJ/signal
- Integrated power
  - Better energy storage high Q inductors and transformers
- Next gen will have commercial bare die with TSVs. One side is for power and the other for signals.
- 100x reduction for core power
- 100x reduction for I/O power
- No need for termination resistors in a lossy system



### The Cooling and Power Problem



#### FR-4 118mm x 140mm SiCBs – each 56mm x 61mm

Power regulators matched to SiCB needs require more area than the silicon circuit boards!

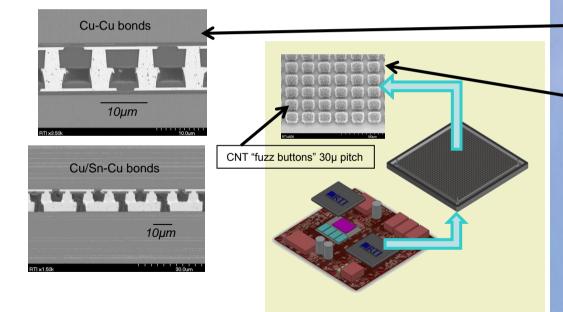
#### Module Features

1 CPU - MPC8536E with memory 4 FPGAs – V6VSX475T 8 GB DDR3 Memory Oscillators and clock buffers Optical I/O

Each FPGA: 100 GFLOPS (9) 20Gb/s Highways: (2) Intra-module (1) PCIe to CPU (6) general use (4) memory ports 2Gb each, BW= 128 Gb/s

Each Module: 0.4 TFLOP (dp) (24) General Highways = 480 Gb/s external I/O 1) CPU Highway = 20 Gb/s (16) memory ports 2Gb each, BW= 512 Gb/s Cold plate cooling 150W maximum All on-board power regulation 5" x 6" x 1"

SiCB bumps = vertical copper signals:


JTAG 4+4 CPU PCIe 4+4 Status Bus 12-40 Clocks 8+8 Power bumps 1000 Outrigger bumps 100

Unused FPGA I/O 360



### Interconnect

- What about re-work?
- What about reliability?
- What about mechanical connectors on silicon?
- Need uniformity of interconnect solutions across fabs



#### How to get off the silicon


- Mechanical connectors and silicon \*minimize
  - Silicon can't take mechanical connector stress
- Limited bump area for reliability reasons
- Flexible miniature ribbon cable <u>\*now</u>
- Wire bonding fading fast <u>\*history</u>
- Bumps, pillars, posts, etc. <u>\*now</u>
  - Plenty of work done in this area
- Conductive elastomer <u>\*now</u>
  - Works well to 300 micron pad sizes
- Nanotube forests! <u>\*10 years</u>
  - nanovelcro
- Indium solder <u>\*5 years</u>
  - Different reflow temperatures for different parts
- Tiny flexible cable \* now
  - Careful handling
- Optical connectors <u>\*now</u>
  - Careful handling
- Free-space laser optical ideal , no connector at all! <u>\*5 years</u>
- Near field RF <u>\*5 years</u>
  - Clock distribution within a module of several SiCBs
- Coupled capacitor <u>\*5 years</u>



#### **RTI International**

### Bandwidth

- Devices must move from 1000 I/O to 100,000 I/O or equivalent bandwidth
- Eye diagrams of a 2cm trace @ 6GHz one with no TSV and one with a TSV. Xilinx V6 LVCMOS 1.5v, 16mA drive, 500 micron thick wafer and TSV.

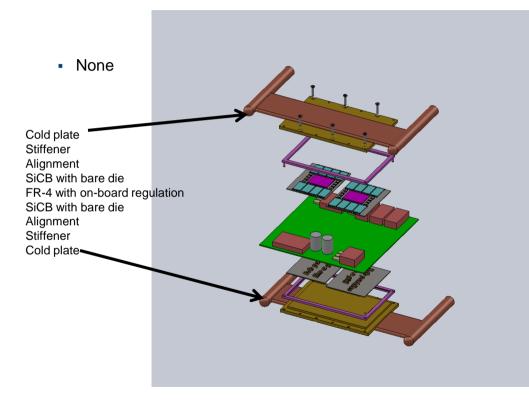


### How to improve Bandwidth

- Fix TSVs!
  - Higher background resistivity
  - Smaller diameter
  - Thinner wafers
- More I/O pins
- Internal Optical
  - Optical grading
  - Silicon diodes and detectors
- External Optical
- Inter-module RF
- Is there an Amdahl's Law or Rent's rule for silicon circuit board based systems?



### **Electrical Testing**


- SiCB testing do-able today
  - Flying probe minimum pad size = 19µ. Preferred minimum is 23µ.
  - Visual inspection
  - Similar to FR-4 PCB testing
- Bare die testing
  - Big Problem today
  - More sources of tested bare die are available today
  - Probe card for JTAG/BIST
  - Flying probe for I/O continuity
- Module testing
  - JTAG/BIST
- Integrated system monitoring
  - Temperature
  - Voltage
  - Traffic

### We need work in testing

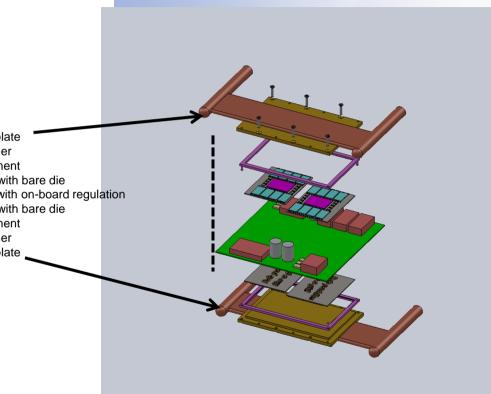
- Bare die need to be built with probe-able JTAG
- Better Flying Probe accuracy
- 10 years ideal bare die would have probe-able power pads, optically testable I/O pads, optically accessible JTAG port.



### Don't worry Issues



- As far as I can tell there is nothing that we can ignore now.
- There are too many interconnected issues to eliminate any of them.




- Design
  - PCB tools are used for 3D silicon and silicon circuit boards.
- Fab Ξ.
  - The TSV bandwidth problem
- Bandwidth
  - 40 GHz copper all day
  - Integrated optical
- Power and Cooling
  - pJ/signal
  - Integrated power
    - Better energy storage high Q inductors and transformers
  - Next gen will have commercial bare die with TSVs. One side is for power and the other for signals.
  - 100x reduction for core power
  - 100x reduction for I/O power
- Assembly and Rework
  - Cheap MOSIS
  - Bare die sources
  - Indium, self-reflow
  - Conductive elastomers
  - Nanotube forests
- Testing
  - Bare die testing
- Reliability
- Cost
  - Comparable to exotic PCBs today
  - Less expensive in volume
- Supply Chain
  - Lots of change as processes become standardized

Cold plate Stiffener Alignment SiCB with bare die FR-4 with on-board regulation SiCB with bare die Alignment Stiffener Cold plate



### 4 to 7 years out 2015 to 2017



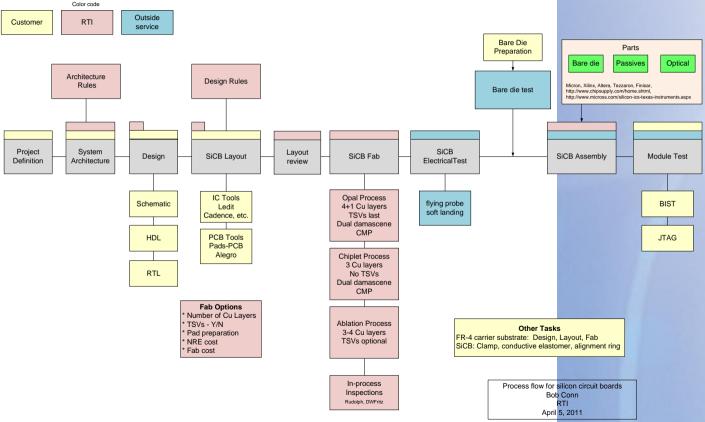
## 8 to 12 years out 2019 to 2023

#### Design

- Low cost design capture tools spanning PCB to SiCB
- Integrated with layout tools
- Partitioner included
- Multi-medium simulations
- Integrated embedded optical
- Chips are built with TSVs
- Chips are build with self- I/O test
- Chips are built specifically for silicon circuit boards
  - Self –test
  - Self I/O test
- 10,000 I/O
- Memory chips with no multiplexing

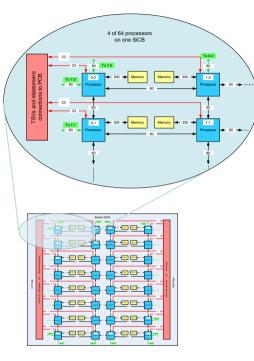
#### Fab

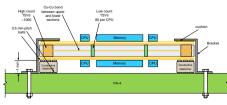
- Composite structures mechanical structure for strength, silicon for active devices, glass for routing all in one fusion bonded stack
- Integrated optical gradings
- Integrated POL regulators
- Integrated RF dust
- Direct write patterning e.g. laser ablation
- Organic dielectrics for better signaling, better reliability, lower cost


#### Bandwidth

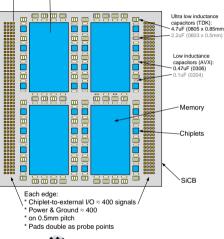
- 100GHz copper
- ??? optical
- Integrated optical grading
- Integrated optical

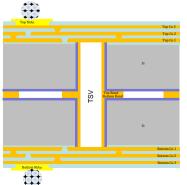
- Power and Cooling
  - Single voltage power of 12v or 48v
  - pJ/signal
  - Integrated power
    - Better energy storage high Q inductors and transformers
  - Next gen will have commercial bare die with TSVs. One side is for power and the other for signals.
  - 100x reduction for core power
  - 100x reduction for I/O power
- Assembly and Rework
  - Cheap MOSIS
  - Bare die sources
  - Indium, self-reflow
  - Conductive elastomers
  - Nanotube forests
- Testing
  - BIST
    - Bare die self-testing
- Reliability
  - Better than packaged parts
- Cost
  - Less than commodity FR-4
- Supply Chain
  - Normal way of





## Supply Chain




- No coherent supply chain today
- Most 8" fabs should be able to build silicon circuit boards
- Requires silicon circuit board + bare die + FR-4
- Weak points are
  - Non-uniform understanding of 3D silicon
  - Incompatible processes my bare die can't attach to your silicon circuit board
  - Bare die testing







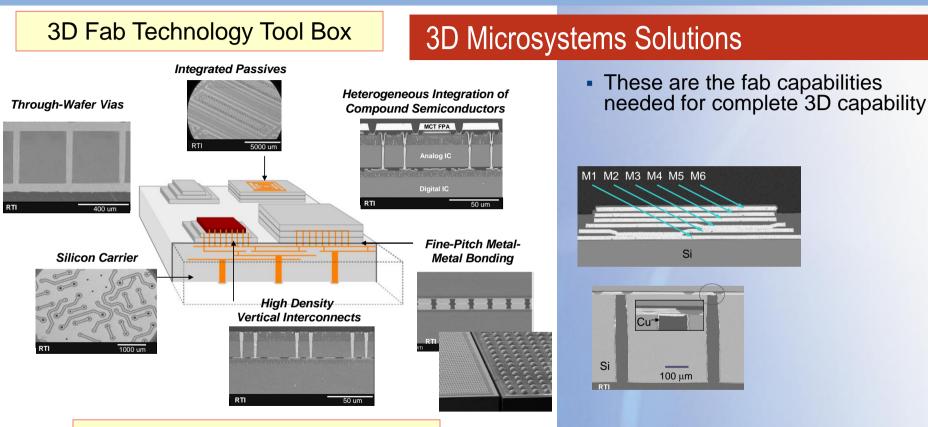

# UC Berkeley-BWRC





#### 32 Chiplets

- Low power custom die
- 2 CPUs, router, memory controller
- 256-bit wide DDR2 memory ports
- I/O power is approximately 1pJ
- 4 stacked memory die
  - Tezzaron Octopus
- SiCB is 52mm x 55mm
  - Seven copper layers for power and interconnect
  - Wafer bonded silicon circuit boards
  - Power: 1.0v @ 2.6A; 1.5v @ 16A
  - Connection to external FR-4 PCB through conductive elastomer with a 0.4mm pitch
- Goals
  - Demonstrate energy optimized multiprocessor design methodology for DOE high-performance computing applications
  - Provide proof-of -concept for rapid prototyping through the use of standard substrates, standard components, and shuttle runs
  - Explore low-volume deployment.




### CNT Anisotropic Conductive Films

- Anisotropic conductive films (ACFs) provide electrical connectivity in the vertical direction, and electrical insulation between adjacent pads
  - Current applications include low density, low performance applications such as displays and RFID
  - Current ACF technology does not simultaneously provide high conductivity and high pad density
- Higher performance, higher pitch solutions open new opportunities in 3-D chip stacking
  - High density, high performance ZIF connectors
  - Removable modules
  - CTE mismatch isolation at Si FR4 interface



#### **RTI** International



### "IC Foundry Agnostic" 3-D Heterogeneous Integration

19

### Conclusions

- 3D silicon is here
- Lots of work to get to a smooth running prototype stage 5 years
- Lots more work to get to routine production 10 years
- Today we can do it it's just engineering