MEMs Research Needs
A Packaging Perspective

Glenn G. Daves
Director, Packaging Solutions Development
Freescale Semiconductor, Inc.
A Brief History of MEMS

Piezo-resistive effect of Si-Ge discovered

Si-Ge Strain Gage

Resonant Gate Transistor patented

Pressure Sensors

Term “MEMS” first used

iPhone

Bio Sensors

Gyrosopes

Accelerometers

Inkjet Heads

IR Sensors

Digital Light Processors

Tire Pressure Monitors

iPod

SOURCE: Southwest Center for Microsystems Education (SCME), History of MEMS Learning Module, 2001
MEMS Trends & Packaging Implications

- **Increasing Accuracy**
 - Increasing precision is desired/demanded over time
 - Isolation: stable packages that isolate sensor from extraneous stresses

- **Increasing Integration**
 - More functions, more chips in a single sense unit
 - Integration: expanding SiP, PiP, PoP complexity

- **Miniaturization**
 - Handheld device space constraints fix maximum volumetric envelope
 - Miniaturization:

- **Increasing Diversity**
 - Expanding applications and markets
 - Customization: Each package customized for the application, market, and environment. Pressure, inertial, optical / consumer, automotive, medical...
 - Design: accuracy required to do all the above well.

- **Cost, Cost, Cost**
 - Leverage existing capabilities (test & pkg) and integration, standardization.
Key Focus Areas for Research

• Design Accuracy

• Isolation Improvement

• Cost

• Applications
Design Accuracy

- MEMS designs sometimes experience many revisions.
 - Inherent functionality
 - Fabrication process variation
 - Assembly and board mounting stresses
 - Environmental conditions

- Current analytic and finite element modeling approaches are insufficient to achieve “first time right” design objectives.

- Research Needs
 - Automation / Simplification
 - To enable modeling of statistical variation and complex systems without added labor.
 - Definition of model boundary conditions
 - To improve design accuracy and better predict actual performance
Isolation Improvement

• Conventional wisdom: ceramic as a stable foundation for the system.
 - But, it is unaffordable and not scalable to miniaturization needs.

• Conventional microelectronics packaging materials (lead frames, substrates, mold compounds, etc.) have attractive pricing but create and transmit more extraneous stresses to the sensor.
 - Increasing sensitivity requirements are revealing the limitations of applying these packages to MEMS.

• Research Needs
 - **Materials**
 ▪ Create a cost-effective ceramic-like base suitable for many form factors.
 - **Physical Isolation**
 ▪ Design robust sensors that are immune to extraneous stress fields.
 - **Compensation / Trimming**
 ▪ Develop more sophisticated methodologies that cancel-out extraneous stresses.
Cost

- **Cost Hierarchy:**
 - Conventional microelectronics paradigm: chip > package > test
 - Emerging MEMS paradigm: test > package > chip

- Despite the changing cost paradigm, the overwhelming majority of R&D attention, effort, and dollars are directed towards improving the chips to deliver more sensitivity, integration, etc.

- **Research Needs**
 - **MEMS Design-for-test / Self-test methodologies**
 - To eliminate the need for custom actuation-based testers & handlers and leverage existing digital tester/handler infrastructure.
 - **Isolation Improvement**
 - To enable leverage of existing digital packaging technologies & cost structures.
 - **Standardization & Integration**
 - One product / one process / one package. Multi-function products = fewer pkgs.
Emerging MEMS Packaging Applications

- **Micro-fluidics**
 - Medical and implantable devices, drug delivery, lab-on-chip, etc.
 - Cooling 3D chip stacks

- **2-D and 3-D Packaging Integration**
 - Sensing “node” concepts for aerospace and military
 - Volumetric shrinks
 - More function in constant volume

- **Wafer-level Packaging**
 - ASIC-as-cap-wafer, TSV chip/wafer stacks
 - Optical packaging: dispensed lenses, etc.