Technology CAD for Modeling and Design of Bio-Devices

Yang Liu and Robert Dutton
Center for Integrated Systems
Stanford University

Biosensors: Multi-Scale Systems

Circuits & Systems

- Sample prep & delivery
- Signal amplification
- Signal processing

Molecules

- Structure & Charge
- Dynamics
- Recognition specificity
- Interfaces <

Devices

- Electrostatics
- Transport
- Interfaces
 - SCALING

BioTCAD Emphasis on Devices

Process

Modeling

Need for Process Modeling

33333

- Surface morphology is critical
- extremely complicated due to large internal degrees of freedom

How to model a plate of spaghetti?

Just like semiconductor
TCAD, **process**engineering and modeling
are needed for bio-devices
to go from lab science to
real products

Field Effect Biosensors

Binding Kinetics: An Ideal Picture

Our target is [cDNA] in the bulk solution

• Binding equilibrium constant:

 K_a (i.e. ~ $k_{captured}/k_{release}$)

•Langmuir adsorption model

$$N_{ds} = N_p \frac{K_a [cDNA]}{K_a [cDNA] + 1}$$

Input dynamic range: 2 decades

A More Realistic Picture

• A distribution of binding constants:

 $K_{a1}, K_{a2} \dots K_{aN}$

Generalized Langmuir model

$$N_{ds} = N_{p} \frac{\left(K_{a} \left[cDNA\right]\right)^{v}}{\left(K_{a} \left[cDNA\right]\right)^{v} + 1} \qquad 0 < v \le 1$$

|dR/R0|

Heterogeneity of binding kinetics

Liu and Dutton, JAP, 014701, 2009

Key Elements of Modeling

anions, e.g. Cl⁻

5

Biomolecules, e.g. DNA

cations, e.g. Na[†]

water molecules

Transport Modeling: Semiconductor vs. Ion Solution

Semiconductor

- Electrostatics: Poisson
- Electron/hole: drift-diffusion
- crystal lattice: phonon transport

Ionic Conductor

- Electrostatics: Poisson
- Cation/anion: Nernst-Planck
- water molecules: Stokes for micro/nano flow

Basic Physics: Charge Screening

DNA charge effectively screened by counter ions under equilibrium

Potential ~ -1/r * exp(-r/ Λ_D)

Debye length Λ_D :

- ~ 0.8nm in blood serum (150mM)
- ~ 0.4nm in sea water

Electrostatics and Screening I

- single DNA on an oxide/metal surface
- 10 mM ionic concentration

Liu et al. IEDM, p.491, 2008

Equilibrium

Potential from Poisson-Boltzmann solution:

- completely screened in vicinity of DNA
- *very little penetration* into substrate, i.e. being sensed

Electrostatics and Screening II

Poisson-Boltzmann solution of potential

Limit on sensed charge:

$$Q' = \frac{C_{NW}}{C_{NW} + C_{SC}} Q$$

(Charge partitioning)

Basic Physics: Descreening

NO longer in equilibrium:

- DNA and counter ions move oppositely
- Strong E-field
- → counter ion cloud cannot fully relax (Onsager, 1957)
 - → only partial screening
- → charge sensing beyond the Debye length limit

Descreening of DNA in Nanopore

- (Left) Cylindrical symmetric pore where a charged biomolecule is placed at the center; External bias is applied at top/bottom boundaries.
- (Right) potential change due to presence of the charged biomolecule

Liu, Sauer and Dutton, JAP, 084701, 2008

Descreening of DNA in Nanopore

solution

- (Left) Cylindrical symmetric pore where a charged biomolecule is placed at the center; External bias is applied at top/bottom boundaries.
- (Right) potential change due to presence of the charged biomolecule

Liu, Sauer and Dutton, JAP, 084701, 2008

Field Effect Gated Nanopores

Descreening of Gating Potential

As V_d increases:

- more penetration of gate potential into the channel
- reduced amount of counter ions in electrical double layer

Liu, Huber, Tabard-Cossa, Dutton, APL, 143109, 2010

lonic and Fluidic Transport (Drain Bias Effects on Flow)

Very rich device physics:

- highly nonlinear Id-Vd
- concentration polarization
- complex of electroosmosis

Extend design space using dual and/or multiple gates:

Liu, Ran, Dutton, IEDM p.371, 2010

 Liu, Huber, Dutton, APL, 253108, 2010

Gating of DNA Translocation (Nano-Fluidic "Transistor")

- Gate bias works as an electrical valve that turns on/off the translocation of DNAs from source to drain
- TCAD offers quantitative modeling and design capability (Paik, Liu et al. IEDM, p.705, 2011)