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Biosensors: Multi-Scale Systems
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Need for Process Modeling

PATTERN METAL

» Surface morphology is
critical

» extremely complicated
due to large internal
degrees of freedom

Just like semiconductor

How to TCAD, process
| model a engineering and modeling
plate of are needed for bio-devices
spaghetti? to go from lab science to
real products




Field Effect Biosensors
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 Principle: charge detection, i.e. ISFET g g g

* Device variants
= planar FETs
" nanowires FET channel
= CNTs
» hybrid, e.g. Au NP+CNT




Binding Kinetics: An Ideal Picture
Our target is [cDNA ] in the bulk solution

e angmuir adsorption model
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A More Realistic Picture

A distribution of binding constants:
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» Generalized Langmuir model
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Heterogeneity of binding kinetics —_

Liu and Dutton, JAP, 014701, 2009 Log[c-DNA]




Key Elements of Modeling

@ anions, e.g. CI- w Biomolecules, e.g. DNA

® cations, e.g. Na+ @ water molecules
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Transport Modeling:
Semiconductor vs. lon Solution
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e Electrostatics: Poisson e Electrostatics: Poisson
e Electron/hole: drift-diffusion e Cation/anion: Nernst-Planck

. crystal lattice: phonon * water molecules: Stokes for
transport micro/nano flow




Basic Physics: Charge Screening

DNA charge
effectively
screened by
counter ions under

equilibrium

&
ﬁotential ~ -1/r * exp(-r/Ap)

Debye length Ap:
e ~ 0.8nm in blood serum (150mM)
e ~ 0.4nm In sea water




Electrostatics and Screening |
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Equilibrium
Potential from Poisson-Boltzmann solution:

» completely screened in vicinity of DNA
o very little penetration into substrate, i.e.

Liu et al. IEDM, p.491, 2008 being sensed

* single DNA on an oxide/metal
surface
* 10 mM ionic concentration
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Electrostatics and Screening Il

Poisson-
Boltzmann
solution of
potential
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Basic Physics: Descreening

Resulting
Lateral
E-field

slow decay of
potential

NO longer in equilibrium:

* DNA and counter ions move
oppositely

 Strong E-field

—> counter ion cloud cannot
fully relax (Onsager, 1957)

—> only partial screening

-> charge sensing beyond
the Debye length limit




Descreening of DNA in Nanopore
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* (Left) Cylindrical symmetric pore where a charged biomolecule is
placed at the center; External bias is applied at top/bottom boundaries.
* (Right) potential change due to presence of the charged biomolecule

Liu, Sauer and Dutton, JAP,
084701, 2008




Descreening of DNA in Nanopore
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* (Left) Cylindrical symmetric pore where a charged biomolecule is
placed at the center; External bias is applied at top/bottom boundaries.
* (Right) potential change due to presence of the charged biomolecule

Liu, Sauer and Dutton, JAP,
084701, 2008




Field Effect Gated Nanopores
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Descreening of Gating Potential
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As V, Increases:

e more penetration of gate

potential into the channel '%%0 40 50 60 30 40 50 60 30 40 50 60
« reduced amount of counter b

lons In electrical double layer Liu, Huber, Tabard-Cossa, Dutton,
APL, 143109, 2010
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lonic and Fluidic Transport
(Drain Bias Effects on Flow)
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Very rich device physics:
« highly nonlinear 1d-Vvd
e concentration polarization
e complex of electroosmosis

Extend design space using dual
and/or multiple gates:

* Liu, Ran, Dutton, IEDM p.371, 2010
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Gating of DNA Translocation
(Nano-Fluidic “ Transistor”)

DNA Capture Rate
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©-Simulation W Measurement

» Gate bias works as an electrical valve that turns
on/off the translocation of DNASs from source to drain
« TCAD offers guantitative modeling and design
capability (Paik, Liu et al. IEDM, p.705, 2011)




