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Biosensors: Multi-Scale Systems
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Circuits & Systems
• Sample prep & 

delivery
• Signal amplification
• Signal processing

Devices
• Electrostatics
• Transport

• Interfaces

• SCALING

Molecules
• Structure & 

Charge
• Dynamics
• Recognition 

specificity
• Interfaces

BioTCAD
Emphasis 
on Devices

Process 
Modeling 
Issues



Need for Process Modeling

3

How to 
model a 
plate of 
spaghetti?

• Surface morphology is 
critical
• extremely complicated 
due to large internal 
degrees of freedom

Just like semiconductor 
TCAD, process
engineering and modeling 
are needed for bio-devices 
to go from lab science to 
real products



Field Effect Biosensors
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• Principle: charge detection, i.e. ISFET
• Device variants

 planar FETs 
 nanowires
 CNTs
 hybrid, e.g. Au NP+CNT 
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Binding Kinetics: An Ideal Picture
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•Langmuir adsorption model

Our target is [cDNA ] in the bulk solution
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• Binding equilibrium constant:

Ka (i.e. ~ kcaptured / krelease)



A More Realistic Picture
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• A distribution of binding constants:

Ka1, Ka2 … KaN
• Generalized Langmuir model
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Heterogeneity of binding kinetics

Liu and Dutton, JAP, 014701, 2009



Key Elements of Modeling

Electric
field

water moleculescations, e.g. Na+
anions, e.g. Cl-
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Biomolecules, e.g. DNA

Solid substrate
                 Surface

Charge
(assumed 
negative)



Transport Modeling: 
Semiconductor vs. Ion Solution

Semiconductor

• Electrostatics: Poisson
• Electron/hole: drift-diffusion
• crystal lattice: phonon 

transport

Ionic Conductor

• Electrostatics: Poisson
• Cation/anion: Nernst-Planck
• water molecules: Stokes for 

micro/nano flow

CB

VB

E E
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Basic Physics: Charge Screening
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Potential ~ -1/r * exp(-r/D)

DNA charge 
effectively 
screened by 
counter ions under 
equilibrium

Debye length D:
• ~ 0.8nm in blood serum (150mM)
• ~ 0.4nm in sea water



Electrostatics and Screening I
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electrolyte

Potential from Poisson-Boltzmann solution:
• completely screened in vicinity of DNA
• very little penetration into substrate, i.e. 
being sensed

Equilibrium
• single DNA on an oxide/metal 
surface
• 10 mM ionic concentration

Liu et al. IEDM, p.491, 2008

CSC



Electrostatics and Screening II
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Limit on sensed charge:

(Charge partitioning)



Basic Physics: Descreening
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NO longer in equilibrium:

• DNA and counter ions move 
oppositely

• Strong E-field 
 counter ion cloud cannot 

fully relax (Onsager, 1957) 
 only partial screening 
 charge sensing beyond 

the Debye length limit

Applied
E-field

slow decay of 
potential

+Q

+Q

Resulting
Lateral
E-field

-Q



Descreening of DNA in Nanopore
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• (Left) Cylindrical symmetric pore where a charged biomolecule is 
placed at the center; External bias is applied at top/bottom boundaries.
• (Right) potential change due to presence of the charged biomolecule

Ve = 0 VVe = 7 V

PNP 
solution

Liu, Sauer and Dutton, JAP, 
084701, 2008



Descreening of DNA in Nanopore
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• (Left) Cylindrical symmetric pore where a charged biomolecule is 
placed at the center; External bias is applied at top/bottom boundaries.
• (Right) potential change due to presence of the charged biomolecule

Ve = 0 VVe = 7 V

PNP 
solution

Liu, Sauer and Dutton, JAP, 
084701, 2008



Field Effect Gated Nanopores
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Electric
field

Gate, Vg

Vs

Vd



Descreening of Gating Potential
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Vd

GND

Vg

Liu, Huber, Tabard-Cossa, Dutton, 
APL, 143109, 2010

As Vd increases:
• more penetration of gate 
potential into the channel
• reduced amount of counter 
ions in electrical double layer

=1V



Ionic and Fluidic Transport
(Drain Bias Effects on Flow)
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Very rich device physics:
• highly nonlinear Id-Vd
• concentration polarization
• complex of electroosmosis

Ave. Ion Conc.

Fluid flow

• Liu, Huber, Dutton, 
APL, 253108, 2010

Extend design space using dual 
and/or multiple gates:

• Liu, Ran, Dutton, IEDM p.371, 2010



Gating of DNA Translocation
(Nano-Fluidic “Transistor”)
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Gate, Vg

Vs

Vd
• Gate bias works as an electrical valve that turns 
on/off the translocation of DNAs from source to drain
• TCAD offers quantitative modeling and design 
capability (Paik, Liu et al. IEDM, p.705, 2011)


