Biosensor Systems in Standard CMOS: Fact or Function?

Arjang Hassibi
University of Texas at Austin
Why Biosensors? Why Genomics?

Small details in the DNA can make a huge difference!

Albert Einstein (1879-1955)
Greatest Achievement: Theory of Relativity

Bobo the Chimp (1995-Now)
Greatest Achievement: Shown Above

1.5% DNA Difference
CMOS-Integrated Biosensors

- Fluidic Package
- Sensor Array
- Pixel
CMOS-Integrated Biosensors

CMOS-Compatible Transducer

CMOS Integrated Sensor
CMOS Biosensing Capabilities

> 95% of molecular detection systems rely on visible-range optical or LF electrical transducers

Crystallography Absorption Spectroscopy Bioluminescence and Fluorescence Absorption Spectroscopy NMR and ESR Spectroscopy Electro-Analytical

<table>
<thead>
<tr>
<th>X-RAY</th>
<th>ULTRAVIOLET</th>
<th>Visible</th>
<th>INFRARED</th>
<th>MICROWAVE</th>
<th>RF</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 nm</td>
<td>800 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMOS-Compatible

A. Hassibi
CMOS Biochip Examples

Optical

Fluorescence

Impedance

Bioluminescence

Electro-Analytical

pH

ISSCC 2009

ISSCC 2010

VLSI 2011

Nature 2011
Example: Sequencing CMOS Biochip

(to appear) VLSI Symp. 2012
Example: Sequencing CMOS Biochip

- DNA sequence: CGGCAGCA
- Magnetic Bead
- Streptavidin
- Biotin
- Self-Primed DNA

Graphs showing the current changes over time for different nucleotides (dATP, dCTP, dGTP, dTTP) during the polymerization process.
Fabrication/Assembly (1)

Additional Steps are required to create a disposable biochip

1. CMOS Chip
2. Electrical Packaging
3. I/O Isolation
4. Bio-functionalization
5. Sample Interfacing

Additional Steps are required to create a disposable biochip.
Chip Fabrication/Assembly (2)

Example: Affinity-based biosensors

CMOS Chip

Electrical Packaging

I/O Isolation

Bio-functionalization

Sample Interfacing

Capturing Molecules

Linker
Chip Fabrication/Assembly (3)

Example: Random bead arrays

1. CMOS Chip
2. Electrical Packaging
3. I/O Isolation
4. Bio-functionalization
5. Sample Loading
Huge Application Space

<table>
<thead>
<tr>
<th>Application</th>
<th>Pixel</th>
<th>Typical Array Size</th>
<th>IC Design</th>
<th>Post-CMOS Processing</th>
<th>Bio-functionalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Microarrays</td>
<td>Fluorescence</td>
<td>10^4</td>
<td>Photo-Detection</td>
<td>Optical Filter</td>
<td>DNA Attachment</td>
</tr>
<tr>
<td>qPCR</td>
<td>Fluorescence</td>
<td>10^2</td>
<td>Photo-Detection</td>
<td>Optical Filter</td>
<td>DNA Attachment</td>
</tr>
<tr>
<td>Digital PCR</td>
<td>Fluorescence</td>
<td>10^5</td>
<td>Photo-Detection</td>
<td>Optical Filter</td>
<td>-</td>
</tr>
<tr>
<td>Label-Free Microarrays</td>
<td>Amperometric</td>
<td>10^4</td>
<td>Active Electrode</td>
<td>Electrode</td>
<td>DNA Attachment</td>
</tr>
<tr>
<td>Electrical-qPCR</td>
<td>Amperometric</td>
<td>10^2</td>
<td>Active Electrode</td>
<td>Electrode</td>
<td>DNA Attachment</td>
</tr>
<tr>
<td>Sequencing (Roche/454)</td>
<td>Bioluminescence</td>
<td>10^6</td>
<td>Photo-Detection</td>
<td>Micro-well</td>
<td>-</td>
</tr>
<tr>
<td>Sequencing (Illumina)</td>
<td>Fluorescence</td>
<td>10^8</td>
<td>Photo-Detection</td>
<td>Optical Filter</td>
<td>DNA Attachment</td>
</tr>
<tr>
<td>Sequencing (Ion)</td>
<td>pH Detection</td>
<td>10^7</td>
<td>ISFET</td>
<td>Micro-well</td>
<td>-</td>
</tr>
<tr>
<td>Sequencing (InSilixa)</td>
<td>Charge Detection</td>
<td>10^7</td>
<td>Active Electrode</td>
<td>Micro-well</td>
<td>-</td>
</tr>
</tbody>
</table>