The FPGA Flow

Steve Trimberger
Xilinx
15 January 2013
The IC Manufacturing Flow

- **Concerns:**
 - Theft of the design
 - Overbuilds
 - Tampering with the design

- **Challenges: securing the design**
 - Through all phases
 - For all parties
 - For months of elapsed time

- **Don’t forget shipping between suppliers!**
The FPGA “Manufacturing” Flow

- **During base array design and manufacture**
 - Same as custom device design and manufacture

- **During application design**
 - Same as custom device design
 - Do you trust your tools and libraries?
 - But FPGA application functionality is not exposed through the manufacturing flow (like software)

- **During deployment**
 - Same as software
 - Prevent bitstream piracy
 - Prevent loading malicious bitstream
The FPGA “Manufacturing” Flow

- **Sensitive algorithm is in the programming.**
 - It is not exposed through the manufacturing process.
 - It can be loaded into the device at a secure facility.
 - Hard to attack

- **The issues of IC manufacturing evaporate, but we must still secure the design in the field.**
 - The attacker has physical access to the system
 - This is the same as the embedded software protection problem
 - This is an information security problem. We know how to deal with it: algorithms for encryption and authentication.
Virtex-II Configuration Hardware

- AES 256 encryption
- SHA256 authentication
- User selectable key stored in efuse or battery-backed RAM

![Virtex-II Configuration Hardware Diagram]
Q: What About Attacks on Fielded Devices?

A: Self-check

- FPGA can read back configuration internally
- Check stored configuration and use ECC to correct configuration errors
- Monitor temperature, voltage internally
- TMR, …

ICAP – Internal Configuration Access Port
The FPGA Design Environment

- Xilinx Vivado integrated design suite
- Complete design capability
- Limited interactions with 3rd-party tools
- Supports IP integration from internal and external sources
- Supports FPGA design and Zynq AP SoC HW+SW flows
- Can close the loop from front to back of the design process.
Zynq-7000 SoC Design Flow

Software Flow
- SDK - Software
 - Application Development
 - Application Debug
 - Boot Loaders
 - System definition
 - Programmable Logic Config Bits
 - Map of IP location for SW
 - PS Reg Init data

Hardware Flow
- PlanAhead – Prog Logic
 - User Programmable Logic
 - Processing System
 - Programmable Logic Implementation
- XPS – PS + IP block in Prog Logic
 - System Wizards
 - IP Config
 - System Assembly
- PS Configuration

PlanAhead – Prog Logic
- User Programmable Logic
- Processing System
- Programmable Logic Implementation

XPS – PS + IP block in Prog Logic
- System Wizards
- IP Config
- System Assembly

PS Configuration

PlanAhead – Prog Logic
- User Programmable Logic
- Processing System
- Programmable Logic Implementation

XPS – PS + IP block in Prog Logic
- System Wizards
- IP Config
- System Assembly

PS Configuration