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Why do we need novel steep transistors? 

Motivation Statement and Key Result Statement

LEAST Annual Review • August 10-11, 2016

Theme 2383.002 : 

Quantum Engineered Steep Transistor

Task D.2.4:  
Atomistic Carrier Transport Modeling for Steep Devices

Device/Collaboration: 
TFETs based on 2D materials.

Motivation Statement:
2D materials have specific properties which can be used to solve TFETs’ challenges: 
1) sub 10nm dimension scaling, and 2) low ON-current. 

Key Result Statement:
Novel TFET designs are proposed and shown to solve the above mentioned 
challenges based on the state-of-the-art atomistic quantum transport simulations.

Main challenges of TFETs
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1) Low ON-current 2) Sub-10nm scaling

Low ION  Low performance
 Leakage floor hides 

steep part of I-V

Lch↓ + VDD↓  ION ↓
 IOFF ↑ 
 ION/IOFF ↓ 

MoTe2 TFET

InAs 
TFET

2D material TFETs for ION challenge

Atomistic simulation Analysis

Key messages:
• Thin channel is NOT enough for high ION

• Depletion width at source is limiting ION.

Id-Vg of different TMDs

Vdd = 0.5V
Lch = 15nm

ND = 1e20 cm-3

EOT = 0.5nm WD is limiting factor

~ 0.4nm2.5 nm ~ 

Although 2D materials provide the best gate control, depletion width avoids High ION

[5,7]

ION challenge: Dielectric engineered TFET (DE-TFET)

Answer: Dielectric engineering

How to increase E-field and decrease the tunneling distance in 2D TFETs?

Vd
d

= 
0.

2V

Electric field amplification

Atomistic simulation

Device structure

• Combination of low-k & high-k
• Low-k is usually air gap

Idea

• Monolayer WTe2 channel

• Low-k = air gap

• High-k = HfO2

• Lch = 12nm
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DE-TFET Challenges

Small spacing btw. contacts Solution

Small      high transmission 

Leakage 

Landauer formula

Answer: Wokfunction engineering of contacts

How to reduce the leakage between contacts?

Shorting 2 different metals on top   No leakage current 
 No parasitic capacitance

2nd Challenge: Channel length scaling beyond 10nm

Scaling challenge Scaling consequences

1

2

VDD ↓Tunneling energy window ↓ION↓1

2

Scaling Lch  Lch ~ Λ  ION / IOFF ↓

Lch ↓  ION/IOFF ↓↓

Best material choice for short channel TFETs

Best channel materials for TFET applications:
1) Low Eg ~ 1.2 VDD
2) High m*

Shaded region: ION/IOFF > 105

2D materials outperform III-V TFETs in sub 10nm channel lengths.

(Zigzag)

2L Phosphorene
(armchair) 

Best material choice for short channel TFETs

Lch↓ 
Vdd↓

Eg↓ Opt:

m*↑ Opt

The solution of the scaling problem:

InAs

Optimum 
material
for each 

node

Different channel material is required for different technology nodes of  TFETs

Shaded region: ION/IOFF > 105

Some 2D materials have 
required material properties for 

sub-10 nm TFETs. 

Phos.

Phosphorene TFET

Phosphorene TFET

Phosphorene
outperforms TMD TFETs
 a proper bandgap

Scaling of Phosphorene TFET

Eg of Bilayer Phosphorene ~ 0.8 eV = 1.3 VDD

Scales well for 
Lch > 6nm

[8]

Bilayer Phosphorene is ideal for TFET application
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L-shaped phosphorene TFET

Phosphorene nanoribbon L-shaped gate proposal

Answer: L-shaped gate

How to use anisotropic effective mass of phosphorene to scale below 10nm?
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L-shaped phosphorene TFET

1) Low m* for high ION
2) High m* for low IOFF

Using a material with anisotropic m* and L-shaped gate have benefits of
•High ION / IOFF

How does L-shaped TFET  work?

Successful scaling Top view of device

[1]
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Next steps:
1) Model and study the impact of trap and dopant states on the transport 

properties of 2D TFETs.
2) Consider experimental non-idealities such as Schottky contacts and 

compare the simulation results with experiments.


