

Flexible Electronics Integration and Supply Chain Challenges

Malcolm J Thompson PhD CEO

Nano Bio Manufacturing Consortium

1

FlexTech & NBMC Business Model

- 20+ years as industry-led manufacturing consortium w/ government participation
 - Supported DARPA, AF, ARL, AFRL, SOCOM
 - Access to leading companies and PhD level SMEs
- Industry cost-shared manufacturing development program -> 60%+ industry funding
 - 165 projects since 1994

7/23/201

- Demonstrated results in tools, materials, processes and demonstrators
- Creative, Collaborative, Cost Effective

How FlexTech Works

1. Define objectives 2. Set cost share floor 3. If equal technical merit, the higher the cost share the higher the score

Why Flex Electronics? **Change the Way Electronics Are Built**

Printable electronics combines graphic arts printing and microelectronics technologies

- Requires new devices AND new manufacturing paradigms
- Potential to reduce cost at a greater rate than traditional silicon integrated circuit manufacturing
- Low Cost Distributed Manufacturing
- Rapid Fielding

Conventional Silicon Electronics

PE Paradigm: More product flexibility, lower costs, shorter time to bring products to market, and overall innovation and new business opportunities. Rapid Fielding and Distributed Manufacturing

7/23/2015

Source: LM Corp

NBMC Background

AFRL Flexible Hybrid Electronics

Integration of Materials and Manufacturing within a common platform to address various flexible device applications

E RESEARCH LABOR

Nano-Bio Manufacturing Consortium

Challenges and Opportunities February 2013 AFRL awarded FlexTech with a contract to set up the Nano-Bio Manufacturing Consortium

> A consortium of Government, Industry, and Academic Laboratories that provides **R&D funding** for collaborative team projects, workshops and working groups to accelerate the maturation of platform capabilities and the creation of innovative product technologies.

NBMC IS A CATALYST FOR CREATING A NEW INDUSTRY

Supported F

UNCLASSIFIED - For Official Use Only **Flexible Hybrid Electronics**

Human System and Cognition

Human Performance limits capability in MANY Military Missionsand New Technologies are Needed to Sense, Assess and Augment the "Man-in-the-Loop"

- Information Overload
- **Missed Intelligence**
- Threat/Danger Missed

Energy Autonomous 24/7 Operations

Energy limit operational capabilities and mission impact for large time and distances scenarios Issues: •Cost & Weight

Today **Future**

> Scale-up Durability

Integrated Power

harvesting, storage,

and management

Expected 1.5X – 3X

increase in flight

endurance.

ISR and EW Integrated Capabilities

Information and tracking in contested environments (A2/AD) is foundational to decision making and force projection

Threat Detection

Low Profile, Robust Munitions

Precision effects with smaller, low profile munitions pressing requirement for current and future platform effectiveness

- Structure integrated electronics
- Print energetic
- **Conformal comm**

6

Shock resistant devices

UNCLASSFIED – DISTRIBUTION STATEMENT D (DOD and U.S. DOD Contractors) – Critical Technology – FOUO – ITAR/NOFORN

World of Wearables

Program Supported By

Health Monitoring – Target Population ?

Seeking some measure of control over a potentially serious health risk or condition that is difficult to manage

Villing but underserved population

Huge emerging market for wearable electronics

Flexible Hybrid Electronics

More product flexibility, lower costs, shorter time to bring products to market, and overall innovation and new business opportunities.

Flexible Hybrid Electronics

Rapid Fielding and Distributed Manufacturing

substrates **Nanomaterials**

Flexible

sensors, batteries interconnect etc

Low cost manufacturing

e.g., R2R, printing

Low cost hybrid integration and assembly

performance chips Processors,

wireless communication

Flexible thin

high

9

Program Supported E

Biological Recognition Elements (BRE)

- Sensitivity and selectivity
- Stability (shelf-life)
- Functionalization

Evolved Recognition Elements Using Combinatorial Libraries: Exploiting the chemical diversity of

amino acids to identify selective binders!

Materials Specific BREs

SiO₂: MSPHPHPRHHHT Graphene/CNT: HSSYWYAFNNKT

Au: AYSSGAPPMPPF

Kim *et al.* (2012). *JACS* 133, 14480; Slocik *et al.* (2008) *Small* 4, 548; Naik *et al.* (2002) *Nature Materials* 1, 169-172

Biomarker Specific BREs

NPY: YHPNGMNPYTK TNFα: NNNKPNPHELHR

Orexin A: DQSNKIISLQRL

Hagen et al. (2012). ACS Chem. Neurosci. 4, 444; Naik et al. (2012) Lab Chip, 12, 562.

Distribution A. Approved for public release. Distribution unlimited

11

Flexible Substrates

- Polymer Substrates
- Glass

•FlexTech Project with Corning

- Metal
- Ceramics

•Flextech Project with ENrG

• Stretchable Substrates

- Excellent Clarity
- Low CTE
- Solvent Resistance
- Low moisture pick up
- Mechanical Strength

Fibers and Fabrics

PET & PEN Properties

Program Supported By:

Substrates

Application/Substrate Properties			Smoothness	Barrier Properties	Optical Transparency	Dimensional Stability	Thermal Stability	Mechanical Strength/ Flexibility
DEID tog	Antenna		2	3	3	2	2	2
KFID tag	Circuitry		1	2	3	1	2	2
OLEDs			1	1	DS	1	1	APS
Display Backplanes	Inorganic	Passive	2	3	DS	2	2	APS
		Active	1	2	DS	1	1	APS
	Organic	Active	1	1	DS	1	2	APS
Organic Photovoltaics			2	1	DS	2	1	2
Batteries			3	2	3	2	2	2

(1 - very important, 2 - medium and 3 - less important, APS - application and product specific and DS - design specific)

Metrology – Substrate roughness and defect measurement

- 4D is a leading developer of vibration-immune 3D metrology solutions
- Vitriflex is a leading developer of high-performance transparent ultrabarrier films for displays & flexible electronics using an R2R process
- In 2012 Vitriflex and 4D Technology partnered to receive a FlexTech Alliance grant to design a 3D metrology module that:
 - Deploys in-line on R2R systems
 - Scales from single sensor to an array for full areal coverage
 - Continually monitors roughness at the nm-level
 - Quantifies heights, slopes, volumes and areas of micron-level defects
 - Handles back-side reflection effects from transparent substrates

4D Technology Project Final Results

- FlexCam enables real-time monitoring and control of roughness to less than 0.5nm rms
- FlexCam metrology module released Feb 2015
- Met or exceeded all technical goals

4D's FlexCam Commercial Opportunity

- Strong reception at launch at FLEX 2015
- More than 9 quotations outstanding, including to large OEM customers
- Estimate FlexCam will have sales > 100 units in in 2016, growing rapidly
- Have ID'd follow on product to serve even larger flexible electronics market

Additive Processes

Properties of R2R Printing Platforms

Property	Screen	Gravure	Flexography	Lithography
Lateral Resolution [µm]	50	15	20	15
Average Dry Ink Film Thickness [µm]	3 - 60	0.8 - 8	0.8 - 2.5	0.5 - 2
Viscosity of Ink [Pa. s]	0.5 – 50	0.05 - 0.2	0.05 - 0.5	30 - 100
Functional Fraction* [wt %]	15 - 25	5 - 20	12 - 20	20
Pigment Particle Size [µm]	0.8 - 2.5	0.1 - 0.5	0.1 - 0.5	0.2 - 0.7
Amount of Material	Medium	High	High	High
Shear Rate	Low	High	Medium - High	Medium - High
Web Speed [ft/min]	300 - 500	1500 - 3000	300 - 1000	500-3000

Properties of R2R Printing Platforms

Property	Ink-jet	Microdispensing	Laser Assisted Forward Transfer	Electrostatic
Lateral Resolution [µm]	50-20	50-20	10	30
Average Layer Thickness [µm]	0.3 - 10	5-100	0.01-1	1-10
Viscosity of Ink [Pa. s]	0.001 - 0.04	0.02-10	N/A	N/A
Functional Fraction* [wt %]	3 - 10	10-60	100%	5-75
Pigment Particle Size [µm]	0.05 - 0.5	0.8 - 75	N/A	0.05-20
Amount of Material	Low	Low		Low
Shear Rate	N/A	N/A	N/A	N/A
Web Speed* [ft/min]	1400	100		50

*Web fed UV curable inkjet

Functional Inks

Conductor

- Metal, organic based
- Sub-micron particulates
- Transparency
- Bulk conductivity > 104 S/m
- Low processing temperature (< 200 °C)

Dielectric

- Polymeric or nano particulate based
- Electrical resistivity > 1014 Ω-cm
- Film thickness < 5 μm
- Permittivity (2-20), low loss
- Transparency
- Semiconductor compatible band gap
- Low processing temperature (< 200 °C)

Semiconductor

- Organic, inorganic, organic/inorganic blends
- Electron mobility 100 102 cm2/V s
- Transparency
- Low processing temperature (< 200 °C)

Resistive

- Organic, metal, or inorganic
- Resistance (10 100K Ω/\Box)? ?
- ± 10 % Nominal resistance tolerance

Light emitting

- Luminous efficiency (cd/A)
- Radiant efficiency (W/A)
- External quantum efficiency (%)
- Lifetime(T₅₀)

Photovoltaic

- Power conversion efficiency (%)
- Open circuit voltage (Voc)
 - Lifetime

Program Supported By

Printing

Gravure

- Low viscosity (0.02 0.2 Pa.s) for adequate flow in and out of engraved cells
- Short inking path and quick transfer highly volatile solvents rapid release of solvent
- Good lubricity, low abrasion and low corrosivity to enhance doctor blade and cylinder
 life
- Printed films dried mostly by evaporation, some absorption (substrate), UV curing for specialty applications

Flexography

- Wider viscosity processing range than gravure (0.05 0.5 Pa.s)
- Solvent selection limited by flexo plate compatibility photopolymer plates typically not compatible with aromatic and aliphatic hydrocarbons, ketones and some esters
- Good re-solubility and adequate evaporation rate of ink to avoid 'halo' effect (excessive ink build-up on the edges of raised image areas on plate) and thus lower printed feature definition
- Drying by evaporation, absorption or radiation curing (UV, EB) water based and UVcurable inks are common for flexography

Program Supported By

Printing

Offset (Lithography)

- Paste-like and tacky inks (viscosity 30 100 Pa.s)
- Long inking path use of non-volatile solvents and oils
- Elastomers used for inking rollers and blankets prevent use of strong solvent that could soften and swell the elastomers
- Limited choice of binder chemistries (only soluble in weak solvents)
- Emulsification of fountain solution into the ink (not an issue with water-less offset)
- Drying by absorption, oxidation or chemical drying, some applications use UV-curable inks

Screen

- Intermediate viscosity (0.5 50 Pa.s) ink should flow easily through the mesh, then level fast to eliminate mesh markings and rapidly recover the structure to maintain definition and prevent slumping or a slurred print
- Ink solvents should not swell or crack free squeegee rubber or the stencil film
- Drying by evaporation, oxidation or UV curing

(Left) Flat bed screen printing, (Right) Rotary screen printing unit.

Program Supported By:

Printing

DOD Inkjet

- Very low viscosity inks, preferably Newtonian fluids, (viscosity = 0.001 0.04 Pa.s for thermal and piezo, higher viscosities possible for electrostatic inkjet) with surface tension optimally in the range 28 35 mN/cm for proper formation and maintenance of discrete droplets
- Dispersion stability and small size of functional particles or colloids required to avoid nozzle clogging
- Controlled drop formation by concentration and molecular weight of polymers
- Use of less volatile solvents and solvent mixtures to avoid drying at the nozzle ultimately leading to clogging
- Coffee-ring effect is often seen with inkjet use the mixture of low and high boiling point solvents and controlling drying temperature
- Printed film is typically dried by absorption or evaporation UV-curable inkjet inks are also very common

Aerosol Jet

- Maskless, low temperature nanomaterial additive process
- The resulting electronics can have line widths and patterned features between 10 um and 100 um
- Capable of handling materials with a viscosity of 0.7 to 30 cp (ultrasonic atomizer) and materials with a viscosity of 1 to 2500 cp (pneumatic atomizer)

Integration

- Thin Si ICs
- Die attach
 - Pick and place
 - Laser-assisted
 - Self-assembly
 - Electrostatic printing
- Interconnect
- Testing

Program Supported By: 🛉

Integration of Thin Si Chips on Flexible Substrate

Flexible Hybrid System "Combination of flexible printed materials and flexible silicon-based ICs to create a new class of flexible electronics."

26

Communications

Low Cost, High Performance

Compatible with Printed Electronics

Foundry CMOS + FleX Processing

Program Supported By

- Substrates
- Displays
- Displays
- Low Cost, Large Format
- Roll-To-Roll, Screen, Inkjet Print, ...

FleX[™] Commercial Silicon-on-Polymer Process

Silicon-on-Polymer (SoP) is a Thin Device technology developed by American Semiconductor to convert single crystalline foundry wafers into flexible thin devices.

FleX CMOS

- Technology TowerJazz CS18/13 PD-SOI CMOS
 - Interconnect 4-level Aluminum
- Flexibility

Devices

- FleX Silicon-on-Polymer ADC, MCU, RFIC, ASIC
- FleX SoP Process

 Polymer & Bond Pads

 Circuitry

 Sol Substrate

 Polymer & Bond Pads

 Circuitry

 Sol Substrate

 Polymer & Bond Pads

 Circuitry

 Sol Substrate

 Polymer & Bond Pads

 Circuitry

 Polymer

 Polymer

FleX-ADC Characterization

- FleX-ADC shows good characterization response with no change from traditionally packaged parts to FleX-IC format
- FleX-ADC tested on Rainbow platform with good results

FleX-IC Integration: Attach & Interconnect

- Development of die singulation for volume manufacturing
 - Mechanical cutting
 - Standard die saw
 - Laser cutting
- Development of die interconnect for volume manufacturing
 - Physical flexibility after cure
 - Electrical conductivity versus bulk silver
 - Printability: pitch capability, z-height requirements, thermal budget
 - Manufacturability: throughput, total COO

FleX-IC Integration: Attach & Interconnect

Development of Alternative Interconnect Materials and Methods

- Evaluation of anisotropic (z-axis) conductive adhesive materials
- Show good results using AS_MEC001 test die

FleX-IC Integration: Attach & Overcoat

FHS Die Attach and Physical Protection

- Evaluation ongoing for die attach materials.
 - Thin
 - Physically Flexible
 - PET compatible
- Evaluation ongoing for die overcoat materials.
 - PET compatible, UV cure, low water absorption, scratch protection
 - Flexibility characteristics after cure
 - Electrical isolation of interconnect traces
 - Mechanical robustness
- Existing overcoats meet most of the requirements. Materials evaluations continue for improved overcoat
- Evaluation ongoing for mechanical (ZIF) connectors
 - Printed metals lack robustness for repeated connections

Flexible Hybrid System Reliability

Dev Kit FHS Qualification Test

Sequence of 8 tests

Test #	Location	Test Description	
1	ESD station	in/out of esd package	5
2	ESD station	mandrel 40mm bend both XY axis	5
3	ESD station	5" edge drop onto table	5
4	ESD station	shorting all zif pins together w/ conductor	2
5	no ESD	in/out of esd package	5
6	no ESD	mandrel 40mm bend both axis	5
7	no ESD	5" edge drop onto table	5
8	no ESD	shorting all zif pins together w/ conductor	2

Initial Observations

- ZIF connectors: Insert in/out failure at 30x
- ZIF fcb, Nanoparticle flaking during use
- ZIF pcb, Cracked housing
- fcb can be trimmed to recover
- Edge drop
 - 5" drop to table, no failures
- ESD
 - Use at non-ESD station did not lead to failure of kit (Not recommended)

Program Supported By

Flexible Hybrid System Reliability

Rcurve - radius of curvature test

- Static x/y orientation flexibility test
- Rainbow test coupon
- Mandrel radius sizes (mm): 5, 6, 7, 8, 10, 12, 15, 20, 25, 30, 40
- Test: bend rainbow strip sample around mandrel on two orthogonal axes, decrease radius until mechanical/electrical failure occurs
- Failure analysis determine component or material(s) causing failure
- Update and execute new process matrix from mandrel results
- Rcurve testing part of all ASI FleX
 development

FleXform-ADC[™] Development Kit

FleXform-ADC Kits provide:

- "Out-of-the-box" proof of FHE feasibility
- User printable FHE with on-board FleX-ADC[™]
- Integration Board and Software
- Enables printed device demonstrations
- Fully supported by ASI flexible technology integration team for design and manufacturing

FleXform-ADC Kit contents:

- Quick Start Guide
- FleXform-ADC printed circuit board (PCB)
- Two button cell batteries
- One 8.5" X 5.5" flexible circuit board sheet with two instances of the FleXform-ADC flexible circuit board (FCB)
- Additional documentation, videos and software development tools are available for download

FHE Integration with FleX-IC Chipset

Sensors are Numerous

- Printed
- Flexible
- Physical
 - Temperature
 - Pressure
 - Humidity
- Physiological / Biological
- Electrical
 - Voltage
 - Current
 - Resistance

FleX-ADC[™]

Signal

Processing

Product Overview

- 8-bit ADC
- 2.5V
- Flexible and conformal

Product Features

- 8-bit Successive Approximation ADC
- 8 input, 100k s/s
- Single and continuous
- 2-wire l²C
- communication

Available Now

FleX-MCU™

Product Overview

- 8-bit Microcontroller
- Low Power

Product Features

- RISC microcontroller
- ROM and SRAM
- UART, I2C and SPI comm.
- Multiple programmable timers
- Multiple GPIO ports for sensor data collection

Available in 2015

Comm FleX-RFICTM

Product Overview

Power-On Reset

- IP-X[™] TTO protocol
- Programmable via 2-wire I²C interface
- 860-960MHz (UHF)
- 64-bit unique identification
 (UID) including 16-bit CRC
- 0.1m–10m read range
- 64kpbs or 256kpbs
- Anti-collision protocol

Available in 2015

Flexible Hybrid Electronics Status and Activity

Collaborators

Cooperative efforts are used to accelerate commercialization

- FHE development
- home Electronics platform
- soligie Scatterable media

- FleXform evaluation
- GOEING FleX integration
- brewer science Sensor demo

RockSat (NASA)

Product LaunchFHE-MII Proposal Participation

Current Activities

• Customer product development

FleXform-ADC[™] Dev Kit

- New Boise FHE facility
- Internal R&D

Advanced Novel Packaging

Compliant Interconnects

Intravascular Ultrasound (IVUS) is a catheter-based system that allows physicians to acquire images of diseased vessels from inside the artery.

~20 % prestrain

Digital Fluidic Microassembly

Use dynamic electric fields to transport, orient, and fix chips

Program Supported Bv

Supported By:

Magnetically Directed Self-Assembly: Process Flow

Hybrid integration and full electrical connection of semiconductor devices on flexible substrate using magnetically directed assembly is shown.

imagination at work

21 GE Title or job number 2/5/2014

Program Supported By:

Transfer & Wiring

Program Supported By

Conclusions

- An extensive Flexible Electronics Ecosystem exists
- Eco-system will continue to grow rapidly with the explotion of applications
- The most significant technical challenges are the interfaces and integration of the technologies

